The role of androgen receptor (AR) in the initiation and progression of prostate cancer (PCa) is well established. Competitive inhibition of the AR ligand-binding domain (LBD) has been the staple of antiandrogen therapies employed to combat the disease in recent years. However, their efficacy has often been limited by the emergence of resistance, mediated through point mutations, and receptor truncations. As a result, the prognosis for patients with malignant castrate resistant disease remains poor. The amino-terminal domain (NTD) of the AR has been shown to be critical for AR function. Its modular activation function (AF-1) is important for both gene regulation and participation in protein-protein interactions. However, due to the intrinsically disordered structure of the domain, its potential as a candidate for therapeutic intervention has been dismissed in the past. The recent emergence of the small molecule EPI-001 has provided evidence that AR-NTD can be targeted therapeutically, independent of the LBD. Targeting of AR-NTD has the potential to disrupt multiple intermolecular interactions between AR and its coregulatory binding partners, in addition to intramolecular cross-talk between the domains of the AR. Therapeutics targeting these protein-protein interactions or NTD directly should also have efficacy against emerging AR splice variants which may play a role in PCa progression. This review will discuss the role of intrinsic disorder in AR function and illustrate how emerging therapies might target NTD in PCa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5000789 | PMC |
http://dx.doi.org/10.4103/1008-682X.181081 | DOI Listing |
Cancers (Basel)
December 2024
Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA 71103, USA.
For nearly a century, fundamental observations that prostate cancer (PCa) cells nearly always require AR stimulation for sustained proliferation have led to a unidirectional quest to abrogate such a pathway. Similarly focused have been efforts to understand AR-driven processes in the context of elevated expression of its target genes, and much less so on products that become overexpressed when AR signaling is suppressed. Treatment with ARSI results in an increased expression of the TLK1B splice variant via a 'translational' derepression driven by the compensatory mTOR activation and consequent activation of the TLK1 > NEK1 > ATR > Chk1 and NEK1 > YAP axes.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Faculty of Pharmacy, University of Montreal, 2940 Chem. de Polytechnique, Montreal, QC H3T 1J4, Canada.
Background/objectives: Through phase III clinical trials, PARP inhibitors have demonstrated outcome improvements in mCRPC patients with alterations in BRCA1/2 genes who have progressed on a second-generation androgen receptor pathway inhibitor (ARPI). While improving outcomes, PARP inhibitors contribute to the ever-growing economic burden of PCa. The objective of this project is to evaluate the cost-effectiveness of PARP inhibitors (olaparib, rucaparib, or talazoparib) versus the SOC (docetaxel or androgen receptor pathway inhibitors (ARPI)) for previously progressed mCRPC patients with BRCA1/2 mutations from the Canadian healthcare system perspective.
View Article and Find Full Text PDFCancers (Basel)
December 2024
CeRePP, 75020 Paris, France.
Purpose: To identify molecular changes during PCa invasion of adipose space using Spatial Transcriptomic Profiling of PCa cells.
Methods: This study was performed on paired intraprostatic and extraprostatic samples obtained from radical prostatectomy with pT3a pathological stages.
Results: Differential gene expression revealed upregulation of heat shock protein genes: DNAJB1, HSPA8, HSP90AA1, HSPA1B, HSPA1A in PCa PanCK+ cells from the adipose periprostatic space.
Int J Mol Sci
December 2024
Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA.
Prostate cancer (PCa) remains a critical global health challenge, with high mortality rates and significant heterogeneity, particularly in advanced stages. While early-stage PCa is often manageable with conventional treatments, metastatic PCa is notoriously resistant, highlighting an urgent need for precise biomarkers and innovative therapeutic strategies. This review focuses on the dualistic roles of sirtuins, a family of NAD+-dependent histone deacetylases, dissecting their unique contributions to tumor suppression or progression in PCa depending on the cellular context.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Epi Biotech Co., Ltd., Incheon 21983, Republic of Korea.
We previously demonstrated that C-X-C Motif Chemokine Ligand 12 (CXCL12) is primarily secreted by dermal fibroblasts in response to androgens and induces hair miniaturization in the mouse androgenic alopecia (AGA) model. However, the direct effects of androgen-induced CXCL12 on dermal papilla cells (DPCs) and dermal sheath cup cells (DSCs) have not been demonstrated. First, we compared single-cell RNA sequencing data between mouse and human skin, and the results show that CXCL12 is highly co-expressed with the androgen receptor (AR) in the DPCs and DSCs of only human hair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!