Synthesis of two-dimensional titanium nitride Ti4N3 (MXene).

Nanoscale

A.J. Drexel Nanomaterials Institute and Department of Materials Science & Engineering, Drexel University, Philadelphia, PA 19104, USA.

Published: June 2016

We report on the synthesis of the first two-dimensional transition metal nitride, Ti4N3-based MXene. In contrast to the previously reported MXene synthesis methods - in which selective etching of a MAX phase precursor occurred in aqueous acidic solutions - here a molten fluoride salt is used to etch Al from a Ti4AlN3 powder precursor at 550 °C under an argon atmosphere. We further delaminated the resulting MXene to produce few-layered nanosheets and monolayers of Ti4N3Tx, where T is a surface termination (F, O, or OH). Density functional theory calculations of bare, non-terminated Ti4N3 and terminated Ti4N3Tx were performed to determine the most energetically stable form of this MXene. Bare and functionalized Ti4N3 are predicted to be metallic. Bare Ti4N3 is expected to show magnetism, which is significantly reduced in the presence of functional groups.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6nr02253gDOI Listing

Publication Analysis

Top Keywords

synthesis two-dimensional
8
mxene
5
two-dimensional titanium
4
titanium nitride
4
ti4n3
4
nitride ti4n3
4
ti4n3 mxene
4
mxene report
4
report synthesis
4
two-dimensional transition
4

Similar Publications

MetAssimulo 2.0: a web app for simulating realistic 1D & 2D Metabolomic 1H NMR spectra.

Bioinformatics

January 2025

Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom.

Unlabelled: Metabolomics extensively utilizes Nuclear Magnetic Resonance (NMR) spectroscopy due to its excellent reproducibility and high throughput. Both one-dimensional (1D) and two-dimensional (2D) NMR spectra provide crucial information for metabolite annotation and quantification, yet present complex overlapping patterns which may require sophisticated machine learning algorithms to decipher. Unfortunately, the limited availability of labeled spectra can hamper application of machine learning, especially deep learning algorithms which require large amounts of labelled data.

View Article and Find Full Text PDF

Microneedle(MN)-based drug delivery is one of the potential approaches to overcome the limitations of oral and hypodermic needle delivery. An in silico model has been developed for hollow microneedle (HMN)-based drug delivery in the skin and its subsequent absorption in the blood and tissue compartments in the presence of interstitial flow. The drug's reversible specific saturable binding to its receptors and the kinetics of reversible absorption across the blood and tissue compartments have been taken into account.

View Article and Find Full Text PDF

Establishment of iPSC-Derived MSCs Expressing hsa-miR-4662a-5p for Enhanced Immune Modulation in Graft-Versus-Host Disease (GVHD).

Int J Mol Sci

January 2025

Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea.

The immune-modulatory effects of mesenchymal stromal cells (MSCs) are widely used to treat inflammatory disorders, with indoleamine 2,4-dioxygenase-1 (IDO-1) playing a pivotal role in suppressing stimulated T-cell proliferation. Taking that three-dimensional (3D) cultures enhance MSCs' anti-inflammatory properties compared with two-dimensional (2D) cultures, the differentially expressed miRNAs were examined. Thus, we identified hsa-miR-4662a-5p (miR-4662a) as a key inducer of IDO-1 via its suppression of bridging integrator-1 (BIN-1), a negative regulator of the IDO-1 gene.

View Article and Find Full Text PDF

The epithelial and mesenchymal features of colorectal adenocarcinoma (CRAC) cell lines were compared in two-dimensional (2D) and three-dimensional (3D) cultures. In 2D cultures, the three CRAC cell lines exhibited epithelial characteristics with high E-cadherin and low vimentin levels, whereas two exhibited mesenchymal traits with opposite expression patterns. In 3D cultures using low-attachment plates, mesenchymal cells from 2D cultures showed reduced vimentin mRNA levels.

View Article and Find Full Text PDF

Unraveling the role of Ta in the phase transition of Pb(TaSe) using temperature-dependent Raman spectroscopy.

J Colloid Interface Sci

January 2025

Shanghai Key Laboratory of High Temperature Superconductors, Institute for Quantum Science and Technology, Department of Physics, Shanghai University, Shanghai 200444, China. Electronic address:

Phase engineering strategies in two-dimensional transition metal dichalcogenides (2D-TMDs) have garnered significant attention due to their potential applications in electronics, optoelectronics, and energy storage. Various methods, including direct synthesis, pressure control, and chemical doping, have been employed to manipulate structural transitions in 2D-TMDs. Metal intercalation emerges as an effective technique to modulate phase transition dynamics by inserting external atoms or ions between the layers of 2D-TMDs, altering their electronic structure and physical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!