Purpose: The aim of this study was to validate the reliability of dose calibrators for measuring the radioactivity of several radioisotopes in multi-institution.
Methods: We evaluated the measurement accuracy of dose calibrators using a commercially available source ((67) Ga, (99m) Tc, (123) I, (201) TL). Nine dose calibrators (five models) in seven institutions were performed in this study. Each source was measured at least 3 times a day over a period of 4 half-life. Linearity of concentration (%error value) and percent difference values (%diff measurement) between measured and estimated radioactivity were calculated to evaluate the measurement accuracy. In addition, difference among institutions (%diff institution) was evaluated by the error values between measured and reference institution values.
Results: Good linearity of concentration was found between measured and estimated radioactivity in (99m)Tc and (123)I. However, %error value was increased in (67)Ga and (201)TL (maximum 19.3%). %diff measurements were 1.9 ± 0.3% for (67)Ga, -0.9 ± 0.3% for (99m)Tc, 2.2 ± 0.4% for (123)I, and -0.7 ± 0.3% for (201)TL, respectively. Although there were no clear differences in six institutions, %diff institution in one institution tended to be higher than that obtained in other institutions.
Conclusions: Our results indicated that measurement accuracy of nine dose calibrators (five models) was relatively stable. However, difference of measured values tended to be higher in a part of institution and source. It is important to perform quality assurance and quality control for dose calibrator using traceable source.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.6009/jjrt.2016_JSRT_72.5.410 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!