A major step toward an HIV-1 vaccine is an immunogen capable of inducing neutralizing antibodies. Envelope glycoprotein (Env) mimetics, such as the NFL and SOSIP designs, generate native-like, well-ordered trimers and elicit tier 2 homologous neutralization (SOSIPs). We reasoned that the display of well-ordered trimers by high-density, particulate array would increase B cell activation compared to soluble trimers. Here, we present the design of liposomal nanoparticles displaying well-ordered Env spike trimers on their surface. Biophysical analysis, cryo- and negative stain electron microscopy, as well as binding analysis with a panel of broadly neutralizing antibodies confirm a high-density, well-ordered trimer particulate array. The Env-trimer-conjugated liposomes were superior to soluble trimers in activating B cells ex vivo and germinal center B cells in vivo. In addition, the trimer-conjugated liposomes elicited modest tier 2 homologous neutralizing antibodies. The trimer-conjugated liposomes represent a promising initial lead toward the development of more effective HIV vaccine immunogens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4889521 | PMC |
http://dx.doi.org/10.1016/j.celrep.2016.04.078 | DOI Listing |
We isolated three genotypes of highly pathogenic avian influenza virus (HPAIV) clade 2.3.4.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China.
The emergence of mRNA vaccines offers great promise and a potent platform in combating various diseases, notably COVID-19. Nevertheless, challenges such as inherent instability and potential side effects of current delivery systems underscore the critical need for the advancement of stable, safe, and efficacious mRNA vaccines. In this study, a robust mRNA vaccine (cmRNA-1130) eliciting potent immune activation has been developed from a biodegradable lipid with eight ester bonds in the branched tail (AX4) and synthetic circular mRNA (cmRNA) encoding the trimeric Delta receptor binding domain of the SARS-CoV-2 spike protein.
View Article and Find Full Text PDFSci Rep
January 2025
Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
The ongoing emergence of SARS-CoV-2 variants, combined with antigen exposures from different waves and vaccinations, poses challenges in updating COVID-19 vaccine antigens. We collected 206 sera from individuals with vaccination-only, hybrid immunity, and single or repeated omicron post-vaccination infections (PVIs), including non-JN.1 and JN.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
Influenza remains a persistent global health challenge, largely due to the virus' continuous antigenic drift and occasional shift, which impede the development of a universal vaccine. To address this, the identification of broadly neutralizing antibodies and their epitopes is crucial. Nanobodies, with their unique characteristics and binding capacity, offer a promising avenue to identify such epitopes.
View Article and Find Full Text PDFBackground: Hallmark features of AD are well defined, however, the generation of in vitro models of sporadic AD poses a significant challenge due to the complex, undefined etiology and slow progression of this disease. Herpes simplex virus type I (HSV-1) is a pathogen that is gaining increasing attention as a potential causative agent in AD pathogenesis. HSV-1 is a DNA virus that typically resides throughout the peripheral nervous system in a latent state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!