We report the modulation of emission energy, exciton dynamics and lasing properties in a single buckled CdS nanoribbon (NR) by strain-engineering. Inspired by ordered structure fabrication on elastomeric polymer, we develop a new method to fabricate uniform buckled NRs supported on polydimethylsiloxane (PDMS). Wavy structure, of which compressive and tensile strain periodically varied along the CdS NR, leads to a position-dependent emission energy shift as large as 14 nm in photoluminescence (PL) mapping. Both micro-PL and micro-reflectance reveal the spectral characteristics of broad emission of buckled NR, which can be understood by the discrepancy of strain-induced energy shift of A- and B-exciton of CdS. Furthermore, the dynamics of excitons under tensile strain are also investigated; we find that the B-exciton have much shorter lifetime than that of redshifted A-exciton. In addition, we also present the lasing of buckled CdS NRs, in which the strain-dominated mode selection in multi-mode laser and negligible mode shifts in single-mode laser are clearly observed. Our results show that the strained NRs may serve as new functional optical elements for flexible light emitter or on-chip all-optical devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876404 | PMC |
http://dx.doi.org/10.1038/srep26607 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!