Given that the traditional signal processing methods can not effectively distinguish the different vibration intrusion signal, a feature extraction and recognition method of the vibration information is proposed based on EMD-AWPP and HOSA-SVM, using for high precision signal recognition of distributed fiber optic intrusion detection system. When dealing with different types of vibration, the method firstly utilizes the adaptive wavelet processing algorithm based on empirical mode decomposition effect to reduce the abnormal value influence of sensing signal and improve the accuracy of signal feature extraction. Not only the low frequency part of the signal is decomposed, but also the high frequency part the details of the signal disposed better by time-frequency localization process. Secondly, it uses the bispectrum and bicoherence spectrum to accurately extract the feature vector which contains different types of intrusion vibration. Finally, based on the BPNN reference model, the recognition parameters of SVM after the implementation of the particle swarm optimization can distinguish signals of different intrusion vibration, which endows the identification model stronger adaptive and self-learning ability. It overcomes the shortcomings, such as easy to fall into local optimum. The simulation experiment results showed that this new method can effectively extract the feature vector of sensing information, eliminate the influence of random noise and reduce the effects of outliers for different types of invasion source. The predicted category identifies with the output category and the accurate rate of vibration identification can reach above 95%. So it is better than BPNN recognition algorithm and improves the accuracy of the information analysis effectively.

Download full-text PDF

Source

Publication Analysis

Top Keywords

extraction recognition
8
recognition method
8
signal
8
based emd-awpp
8
emd-awpp hosa-svm
8
signal feature
8
feature extraction
8
extract feature
8
feature vector
8
intrusion vibration
8

Similar Publications

The development of deep learning algorithms has transformed medical image analysis, especially in brain tumor recognition. This research introduces a robust automatic microbrain tumor identification method utilizing the VGG16 deep learning model. Microscopy magnetic resonance imaging (MMRI) scans extract detailed features, providing multi-modal insights.

View Article and Find Full Text PDF

Background: Foreign body inhalation is rare in older children, often leading to underdiagnosis and delayed treatment. Most cases involve a single foreign body, but instances of multiple foreign bodies are exceedingly uncommon. This report presents a case of an elder child who inhaled two pen caps, emphasizing the need for clinical vigilance and thorough medical history collection.

View Article and Find Full Text PDF

Complex structures can be understood as compositions of smaller, more basic elements. The characterization of these structures requires an analysis of their constituents and their spatial configuration. Examples can be found in systems as diverse as galaxies, alloys, living tissues, cells, and even nanoparticles.

View Article and Find Full Text PDF

Automatic Sign Language Recognition Systems (ASLR) offers smooth communication between hearing-impaired and normal-hearing individuals, enhancing educational opportunities for impaired. However, it struggles with "curse of dimensionality" due to excessive features resulting in prolonged training time and exhaustive computational demand. This paper proposes technique that integrates machine learning and swarm intelligence to effectively address this issue.

View Article and Find Full Text PDF

Objective: Extracting PICO elements-Participants, Intervention, Comparison, and Outcomes-from clinical trial literature is essential for clinical evidence retrieval, appraisal, and synthesis. Existing approaches do not distinguish the attributes of PICO entities. This study aims to develop a named entity recognition (NER) model to extract PICO entities with fine granularities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!