Based on inverted surface plasmon resonance (ISPR) a novel biosensor consisting of Ge₂₀Ga₅Sb₁₀S₆₅-palladium-graphene layer-biomolecule layer is proposed. The refractive index of biomolecule layer alters as biomolecule experience interactions, thus leading to a shift of ISPR angle. On this basis, the spectrum output of sensor is derived by transfer matrix method. The sensitivity, the resolution, the dynamic detection range and the signal to noise ratio of the presented sensor are discussed and compared with the performance of traditional sensors. Moreover, the influences of grapheme layer thickness on sensors are analyzed with comparative study. Finally, near infrared is used as the incident light of the presented sensor. The results show that, the best thickness of grapheme layer is monolayer; the peak intensity of the ISPR reflection is about 80%~90% of intensity of incident light, guaranteeing a high signal to noise ratio; In the visible light, when λ = 632.8 nm, the presented sensor is 1.9 times the resolution of the sensor based on SiO₂ coupling inverted surface plasmon resonance, is 3. 5 times the resolution of the sensor based on surface plasmon resonance(SPR), and is 2 times the dynamic detection range of pre-existing biosensor based on SPR. The application of Ge₂₀Ga₅Sb₁₀S65 prism extends the detection light wavelength from the visible region to the near infrared region. When λ = 1,000 nm, the sensor is 3-4 times of the sensor in visible region. The research greatly contributes to the realization and application of biosensor based on inverted surface plasmon resonance.
Download full-text PDF |
Source |
---|
Clin Exp Med
January 2025
Liver & Peritonectomy Unit, Department of Surgery, St George Hospital, Pitney Building, Short Street, Kogarah, NSW, 2217, Australia.
Purpose: This study seeks to resolve a fundamental question in oncology: Why do appendiceal and colorectal adenocarcinomas exhibit distinct liver metastasis rates? Building on our prior hypothesis published in the British Journal of Surgery, our institution has investigated potential DNA mutations within the carcinoembryonic antigen-related cell adhesion molecule (CEACAM5) gene's Pro-Glu-Leu-Pro-Lys (PELPK) motif to evaluate its role as a biomarker for liver metastasis risk.
Methods: Partnering with the Australian Genome Research Facility, the PELPK motif of CEACAM5 was analysed in colorectal and appendiceal adenocarcinomas to detect DNA mutations associated with liver metastasis. Additionally, our institution performed the COPPER trial to assess carcinoembryonic antigen (CEA) levels in portal versus peripheral blood in patients with appendiceal adenocarcinoma and a systematic review and meta-analysis of 136 studies on CEA's prognostic significance among patients with colorectal and appendiceal adenocarcinoma.
Acta Pharmacol Sin
January 2025
National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
Sorting nexins (SNXs) as the key regulators of sorting cargo proteins are involved in diverse diseases. SNXs can form the specific reverse vesicle transport complex (SNXs-retromer) with vacuolar protein sortings (VPSs) to sort and modulate recovery and degradation of cargo proteins. Our previous study has shown that SNX3-retromer promotes both STAT3 activation and nuclear translocation in cardiomyocytes, suggesting that SNX3 might be a critical regulator in the heart.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:
Antibiotic resistance genes (ARGs) are markers of drug-resistant pathogens, monitoring them contributes to prevent resistance to drugs. The detection methods for ARGs including PCR and isothermal amplification are sensitive and selective. However, it may take several hours or cannot be used on spot.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871 Beijing, China.
Strong coupling between nanocavities and single excitons at room temperature is important for studying cavity quantum electrodynamics. However, the coupling strength is highly dependent on the spatial light-confinement ability of the cavity, the number of involved excitons, and the orientation of the electric field within the cavity. By constructing a hybrid cavity with a one-dimensional photonic crystal cavity and a plasmonic nanocavity, we effectively improve the quality factor, reduce the mode volume, and control the direction of the electric field using Bloch surface waves.
View Article and Find Full Text PDFNanoscale
January 2025
Sorbonne Université, MONARIS, CNRS-UMR 8233, 4 Place Jussieu, F-75005 Paris, France.
Developing chiral plasmonic nanostructures represents a significant scientific challenge due to their multidisciplinary potential. Observations have revealed that the dichroic behavior of metal plasmons changes when chiral molecules are present in the system, offering promising applications in various fields such as nano-optics, asymmetric catalysis, polarization-sensitive photochemistry and molecular detection. In this study, we explored the synthesis of plasmonic gold nanoparticles and the role of cysteine in their chiroplasmonic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!