Strains originally affiliated to the genera Scopulariopsis and Microascus were compared regarding the scopularide production in order to investigate their ability to produce the cyclodepsipeptides and select the best suited candidate for subsequent optimisation processes. Phylogenetic calculations using available sequences of the genera Scopulariopsis and Microascus revealed that most of the sequences clustered within two closely related groups, comprising mainly Scopulariopsis/Microascus brevicaulis and Microascus sp., respectively. Interestingly, high yields of scopularide A were exhibited by three strains belonging to S./M. brevicaulis, while lower titres were observed for two strains of Microascus sp. Close phylogenetic distances within and between the two groups supported the proposed combination of both genera into one holomorph group. Short phylogenetic distances did not allow a clear affiliation at the species level on the basis of ribosomal DNA sequences, especially for Microascus sp. strains. Additionally, several sequences originating from strains assigned to Scopulariopsis exhibited a polyphyletic nature. The production pattern is in accordance with the phylogenetic position of the strains and significant production of scopularide B could only be observed for the S./M. brevicaulis strain LF580. Thus, the phylogenetic position marks the biotechnologically interesting strains and matters in optimisation strategies. In conclusion, the ability of all five strains to produce at least one of the scopularides suggests a distribution of the responsible gene cluster within the holomorph group. Setting the focus on the production of the cyclodepsipeptides, strain LF580 represents the best candidate for further strain and process optimisation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10126-016-9707-7 | DOI Listing |
Methods Mol Biol
January 2025
Bioprotection Aotearoa, School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand.
This chapter describes the protocol for heterologous expression of Phytophthora proteins in the yeast Pichia pastoris. Two methods to prepare the constructs for expression are described, using two different strains of P. pastoris, as well as methods for protein expression and purification by immobilized metal ion affinity (IMAC).
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2024
Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.
Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system.
View Article and Find Full Text PDFEur J Clin Microbiol Infect Dis
December 2024
Department of Infectious Diseases, Saint-Pierre University Hospital, Brussels, Belgium.
To assess the prevalence of Neisseria meningitidis (Nm) carriage among men who have sex with men (MSM) and examine potential risk factors associated with colonization. This was an observational, cross-sectional, monocentric study. Inclusion criteria were asymptomatic adult MSM.
View Article and Find Full Text PDFFolia Microbiol (Praha)
December 2024
Federal Research Center "Pushchino Scientific Center for Biological Research", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russian Federation.
Cells of the methylotrophic yeast Ogataea parapolymorpha have two genes encoding low-affinity phosphate transporters: PHO87, encoding the plasma membrane transporter, and PHO91, encoding a protein, which is homologous to the Saccharomyces cerevisiae vacuolar membrane transporter. Earlier, we reported that inactivation of PHO91 in O. parapolymorpha interferes with methanol utilization due to the lack of activity of methanol oxidase encoded by the MOX gene.
View Article and Find Full Text PDFVet Sci
December 2024
Veterinary Transfusion Research Laboratory (REVLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy.
(SP) is a commensal and opportunistic pathogen of skin and mucosal surfaces, isolated from healthy dogs and from canine pyoderma cases. It has recently gained attention due to its increasing antibiotic resistance. Platelet-rich plasma (PRP) is a biological product, obtained through a blood centrifugation process, which has antibacterial properties evidenced by in vitro and in vivo studies conducted in both the human and veterinary field.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!