The design approaches for a three-zone simulated moving bed (SMB) chromatography with linear isotherms can be classified into two categories, depending on whether the SMB design is based on a classical region (i.e., triangular region of the triangle theory) in the first quadrant (m2, m3) plane or on a non-triangular separation region in the third quadrant (m2, m3) plane. The SMBs based on the classical and the non-triangular design approaches, which are named here as (m(+))_SMB and (m(-))_SMB respectively, are compared in this study using the Pareto solutions from the simultaneous optimization of throughput and desorbent usage under the constraints on product purities and pressure drop. The results showed that the (m(-))_SMB approach led to significantly lower desorbent usage than the (m(+))_SMB approach, which was due to the fact that the flow-rate-ratios from the (m(-))_SMB approach are extremely lower than those from the (m(+))_SMB approach. This factor also enables the (m(-))_SMB to have a significantly lower pressure drop, thereby making its throughput less restricted by a pressure-drop constraint. Due to such advantage of the (m(-))_SMB, it can make a further substantial improvement in throughput by modulating its adsorbent particle size properly. This issue was investigated using a model separation system containing succinic acid and acetic acid. It was confirmed that if the adsorbent particle size corresponding to the boundary between a mass-transfer limiting region and a pressure-drop limiting region is adopted, the (m(-))_SMB can lead to 82% higher throughput and 73% lower desorbent usage than the (m(+))_SMB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2016.05.016 | DOI Listing |
Int J Mol Sci
December 2024
Institute of Biomedical Chemistry, Pogodinskaya Str., 10, Moscow 119121, Russia.
Biomacromolecules generally exist and function in aqueous media. Is it possible to estimate the state and properties of molecules in an initial three-dimensional colloidal solution based on the structure properties of biomolecules adsorbed on the two-dimensional surface? Using atomic force microscopy to study nanosized objects requires their immobilization on a surface. Particles undergoing Brownian motion in a solution significantly reduce their velocity near the surface and become completely immobilized upon drying.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an 710021, China.
This study introduces a novel water-insoluble dispersant for coal water slurry (CWS), namely, a poly(sodium styrene sulfonate)- SiO nanoparticle (SiO--PSSNa). SiO--PSSNa was synthesized by combining the surface acylation reaction with surface-initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS), energy dispersive spectrometer (EDS), nuclear magnetic resonance spectroscopy (NMR) and thermogravimetric analysis (TGA) verified that SiO--PSSNa with the desired structure was successfully obtained.
View Article and Find Full Text PDFMolecules
December 2024
School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
The efficient recovery of fine argentite from polymetallic lead-zinc (Pb-Zn) sulfide ore is challenging. This study investigated nanobubble (NB) adsorption on the argentite surface and its role in enhancing fine argentite flotation using various analytical techniques, including contact angle measurements, adsorption capacity analysis, infrared spectroscopy, zeta potential measurements, turbidity tests, microscopic imaging, scanning electron microscopy, and flotation experiments. Results indicated that the NBs exhibited long-term stability and were adsorbed onto the argentite surface, thereby enhancing surface hydrophobicity, reducing electrostatic repulsion between fine argentite particles, and promoting particle agglomeration.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China.
Beyond their roles in adsorbing and transporting pollutants, microplastics (MPs) and nanoplastics (NPs), particularly polystyrene variants (PS-M/NPs), have emerged as potential accelerators for the transformation of coexisting contaminants. This study uncovered a novel environmental phenomenon induced by aged PS-M/NPs and delved into the underlying mechanisms. Our findings revealed that the aged PS-M/NP particles significantly amplified the photodegradation of common cephalosporin antibiotics, and the extent of enhancement was tightly correlated to the molecular structures of cephalosporin antibiotics.
View Article and Find Full Text PDFPLoS One
January 2025
College of Electric Power, Inner Mongolia University of Technology, Hohhot, China.
The modified nanoparticles can significantly improve the insulation characteristics of transformer oil. Currently, there is a lack of research on the actual motion state of particles in nanofluid to further understand the micro-mechanism of nanoparticles improving the insulation characteristics of transformer oil. In this study, the nanofluid containing 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!