Synthesis, crystal structure and spectroscopic studies of bismuth(III) complex with 2-substituted benzimidazole ligands.

Spectrochim Acta A Mol Biomol Spectrosc

Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, Department of Chemistry and Life Science, Xiangnan University, Chenzhou 423000, Hunan, PR China. Electronic address:

Published: September 2016

Reaction of BiCl3 with 2-(2-hydroxy-3-methoxyphenyl)benzimidazole (HL) in tetrahydrofuran (THF) under reflux gave mononuclear complex of formula [Bi(HL)2Cl3·H2O]. The binding interaction of the complex with bovine serum albumin (BSA) was investigated using the fluorescence quenching method. The experimental results showed that the complex could bind to BSA in the proportion of about 1:1. The binding reaction was spontaneous and hydrophobic force played major role in the reaction. The binding of the complex to BSA could change the microenvironment and conformation of BSA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2016.04.058DOI Listing

Publication Analysis

Top Keywords

complex
5
synthesis crystal
4
crystal structure
4
structure spectroscopic
4
spectroscopic studies
4
studies bismuthiii
4
bismuthiii complex
4
complex 2-substituted
4
2-substituted benzimidazole
4
benzimidazole ligands
4

Similar Publications

Benggang (collapsing hill) erosion is one of the most serious ecological problems in the south of China. Understanding the relationship between Benggang erosion and landscape pattern is conducive to the study of Benggang occurrence and development from the perspective of landscape ecology, with great significance for Benggang prevention and ecological protection. We classified the Lanxi River Basin in Anxi County, Fujian Province into 32 small watersheds.

View Article and Find Full Text PDF

Exchange-Biased Fe/FeF Nanocomposites: Unveiling the Structural Insights into Spin-Dependent Tunnel Transport.

ACS Appl Mater Interfaces

December 2024

Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan.

Spin-dependent charge tunneling transport of magnetic nanocomposites under alternating current or direct current has revolutionized the understanding of the quantum-mechanical phenomenon in complex granular solids. The tunnel magnetodielectric (TMD) and tunnel magnetoresistance (TMR) effects are two critical functionalities in this context, where dielectric permittivity and electrical resistance, respectively, change in response to an applied magnetic field due to charge tunneling. However, the structural correlation between TMD and TMR, as well as the mechanisms, remains poorly understood, largely due to the challenges in directly characterizing nanoscale intergranular interactions.

View Article and Find Full Text PDF

Objectives: Tinea capitis remains a common fungal infection in children worldwide. Species identification is critical for determining the source of infection and reducing transmission. In conventional methods, macro- and microscopic analysis is time-consuming and results in slow fungal growth or low specificity.

View Article and Find Full Text PDF

Iron-Photocatalyzed Decarboxylative Alkylation of Carboxylic Acids with Morita-Baylis-Hillman Acetates.

Org Lett

December 2024

College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, Henan, P. R. China.

We present an iron-photocatalyzed decarboxylative alkylation strategy involving carboxylic acids and Morita-Baylis-Hillman (MBH) acetates to synthesize -type tri- and tetrasubstituted alkenes with moderate to excellent stereoselectivity (/ ratio up to >19:1). This method is applicable to a broad range of structurally diverse primary, secondary, and tertiary alkyl carboxylic acids, as well as complex pharmaceutical and natural carboxylic acids, achieving efficient alkylation of various MBH acetates under mild conditions (>60 examples, with yields up to 96%). This approach offers a powerful strategy for streamlined alkylation.

View Article and Find Full Text PDF

Generation of transgenic chicken through ovarian injection.

Animal Model Exp Med

December 2024

Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.

Background: Traditional DNA microinjection methods used in mammals are difficult to apply to avian species due to their unique reproductive characteristics. Genetic manipulation in chickens, particularly involving immature follicles within living ovaries, has not been extensively explored. This study seeks to establish an efficient method for generating transgenic chickens through ovarian injection, potentially bypassing the challenges associated with primordial germ cell (PGC) manipulation and fertilized egg microinjection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!