Brain change trajectories that differentiate the major psychoses.

Eur J Clin Invest

Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton South, Vic., Australia.

Published: July 2016

Background: Bipolar disorder and schizophrenia are highly heritable, often chronic and debilitating psychotic disorders that can be difficult to differentiate clinically. Their brain phenotypes appear to overlap in both cross-sectional and longitudinal structural neuroimaging studies, with some evidence to suggest areas of differentiation with differing trajectories. The aim of this review was to investigate the notion that longitudinal trajectories of alterations in brain structure could differentiate the two disorders.

Design: Narrative review. We searched MEDLINE and Web of Science databases in May 2016 for studies that used structural magnetic resonance imaging to investigate longitudinal between-group differences in bipolar disorder and schizophrenia. Ten studies met inclusion criteria, namely longitudinal structural magnetic resonance studies comparing bipolar disorder (or affective psychosis) and schizophrenia within the same study.

Results: Our review of these studies implicates illness-specific trajectories of morphological change in total grey matter volume, and in regions of the frontal, temporal and cingulate cortices. The findings in schizophrenia suggest a trajectory involving progressive grey matter loss confined to fronto-temporal cortical regions. Preliminary findings identify a similar but less severely impacted trajectory in a number of regions in bipolar disorder, however, bipolar disorder is also characterized by differential involvement across cingulate subregions.

Conclusion: The small number of available studies must be interpreted with caution but provide initial evidence supporting the notion that bipolar disorder and schizophrenia have differential longitudinal trajectories that are influenced by brain maturation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/eci.12641DOI Listing

Publication Analysis

Top Keywords

bipolar disorder
24
disorder schizophrenia
12
longitudinal structural
8
longitudinal trajectories
8
structural magnetic
8
magnetic resonance
8
grey matter
8
bipolar
6
disorder
6
studies
6

Similar Publications

Driving brain state transitions via Adaptive Local Energy Control Model.

Neuroimage

January 2025

College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China. Electronic address:

The brain, as a complex system, achieves state transitions through interactions among its regions and also performs various functions. An in-depth exploration of brain state transitions is crucial for revealing functional changes in both health and pathological states and realizing precise brain function intervention. Network control theory offers a novel framework for investigating the dynamic characteristics of brain state transitions.

View Article and Find Full Text PDF

Background: The previous literature concerned with understanding stigma affecting patients with bipolar disorder relies predominantly on qualitative and survey approaches, and rarely contends with the potential role of social desirability on disclosure. The current project employs a 2 × 2 experimental approach to establish the presence of stigmatizing attitudes in a context with real social consequences (i.e.

View Article and Find Full Text PDF

Peripheral neurofilament light chain and intracortical myelin in bipolar I disorder.

J Affect Disord

January 2025

Centre for Clinical Neurosciences, McMaster University, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Mood Disorders Treatment and Research Centre and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, ON, Canada. Electronic address:

Background: Neurofilament light chain (NfL) is a cytoskeletal protein that supports neuronal structure. Blood NfL levels are reported to be higher in diseases where myelin is damaged. Studies investigating intracortical myelin (ICM) in bipolar disorder (BD) have reported deficits in ICM maturation over age.

View Article and Find Full Text PDF

To explore the effect of lithium carbonate combined with olanzapine on glucose and lipid metabolism, as well as gender differences in treating bipolar disorder (BD). 110 BD patients admitted to the Fifth People's Hospital of Luoyang from February 2022 to January 2024 were retrospectively included in the study. Patients were categorized into two groups based on treatment: The single group (lithium carbonate, n = 50) and the coalition group (lithium carbonate + olanzapine, n=60).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!