Arabidopsis NATA1 Acetylates Putrescine and Decreases Defense-Related Hydrogen Peroxide Accumulation.

Plant Physiol

Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (Y.-R.L., M.B., J.Y., A.S.P., G.J.); and Key Laboratory of Tropical Agro Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, PR China (J.Y.)

Published: June 2016

Biosynthesis of the polyamines putrescine, spermidine, and spermine is induced in response to pathogen infection of plants. Putrescine, which is produced from Arg, serves as a metabolic precursor for longer polyamines, including spermidine and spermine. Polyamine acetylation, which has important regulatory functions in mammalian cells, has been observed in several plant species. Here we show that Arabidopsis (Arabidopsis thaliana) N-ACETYLTRANSFERASE ACTIVITY1 (NATA1) catalyzes acetylation of putrescine to N-acetylputrescine and thereby competes with spermidine synthase for a common substrate. NATA1 expression is strongly induced by the plant defense signaling molecule jasmonic acid and coronatine, an effector molecule produced by DC3000, a Pseudomonas syringae strain that initiates a virulent infection in Arabidopsis ecotype Columbia-0. DC3000 growth is reduced in nata1 mutant Arabidopsis, suggesting a role for NATA1-mediated putrescine acetylation in suppressing antimicrobial defenses. During infection by P. syringae and other plant pathogens, polyamine oxidases use spermidine and spermine as substrates for the production of defense-related H2O2 Compared to wild-type Columbia-0 Arabidopsis, the response of nata1mutants to P. syringae infection includes reduced accumulation of acetylputrescine, greater abundance of nonacetylated polyamines, elevated H2O2 production by polyamine oxidases, and higher expression of genes related to pathogen defense. Together, these results are consistent with a model whereby P. syringae growth is improved in a targeted manner through coronatine-induced putrescine acetylation by NATA1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4902623PMC
http://dx.doi.org/10.1104/pp.16.00446DOI Listing

Publication Analysis

Top Keywords

spermidine spermine
12
putrescine acetylation
8
polyamine oxidases
8
arabidopsis
6
putrescine
6
arabidopsis nata1
4
nata1 acetylates
4
acetylates putrescine
4
putrescine decreases
4
decreases defense-related
4

Similar Publications

Spermine driven water deficit tolerance in early growth phases of sweet corn genotypes under hydroponic cultivation.

Sci Rep

January 2025

Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary.

Sweet corn is highly susceptible to water deprivation, making it crucial to identify effective strategies for enhancing its tolerance to water deficit conditions. This study investigates the novel application of Spermine as a bio-stimulant to improve sweet corn (Zea mays L. var.

View Article and Find Full Text PDF

Objectives: This study aimed to analyze the associations between dietary polyamine intake and incident T2DM.

Methods: This prospective analysis included 168,137 participants from the UK Biobank who did not have T2DM at baseline. Dietary polyamines were calculated based on portion sizes of food items and a nutrient database.

View Article and Find Full Text PDF

Creeping bentgrass (Agrostis stolonifera) is a cool-season perennial turfgrass and is frequently utilized in high-quality turf areas. However, a poor to moderate resistance to heat stress limits its promotion and utilization in transitional and worm climate zones. The objectives of the study were to assess the heat tolerance of 18 creeping bentgrass genotypes in the field and to further uncover differential mechanisms of heat tolerance between heat-tolerant and heat-sensitive genotypes.

View Article and Find Full Text PDF

Despite the WHO recommendations in favor of breastfeeding, most infants receive infant formulas (IFs), which are complex matrices involving numerous ingredients and processing steps. Our aim was to understand the impact of the quality of the protein ingredient in IFs on gut microbiota and physiology, blood metabolites and brain gene expression. Three IFs were produced using whey proteins (WPs) from cheese whey (IF-A) or ideal whey (IFs-C and -D) and caseins, either in a micellar form (IFs-A and -C) or partly in a non-micellar form (IF-D).

View Article and Find Full Text PDF

Background: Polyamines, including spermidine (SPD), spermine (SPM) and putrescine (PUT), are essential for cellular physiology and various cellular processes. This study aimed to examine the associations of dietary polyamines intake and all-cause mortality and incident cardiovascular disease (CVD).

Methods: This prospective cohort study included 184,732 participants without CVD at baseline from the UK Biobank who had completed at least one dietary questionnaire.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!