In Situ Hydrogen Dynamics in a Hot Spring Microbial Mat during a Diel Cycle.

Appl Environ Microbiol

Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.

Published: July 2016

Unlabelled: Microbes can produce molecular hydrogen (H2) via fermentation, dinitrogen fixation, or direct photolysis, yet the H2 dynamics in cyanobacterial communities has only been explored in a few natural systems and mostly in the laboratory. In this study, we investigated the diel in situ H2 dynamics in a hot spring microbial mat, where various ecotypes of unicellular cyanobacteria (Synechococcus sp.) are the only oxygenic phototrophs. In the evening, H2 accumulated rapidly after the onset of darkness, reaching peak values of up to 30 μmol H2 liter(-1) at about 1-mm depth below the mat surface, slowly decreasing to about 11 μmol H2 liter(-1) just before sunrise. Another pulse of H2 production, reaching a peak concentration of 46 μmol H2 liter(-1), was found in the early morning under dim light conditions too low to induce accumulation of O2 in the mat. The light stimulation of H2 accumulation indicated that nitrogenase activity was an important source of H2 during the morning. This is in accordance with earlier findings of a distinct early morning peak in N2 fixation and expression of Synechococcus nitrogenase genes in mat samples from the same location. Fermentation might have contributed to the formation of H2 during the night, where accumulation of other fermentation products lowered the pH in the mat to less than pH 6 compared to a spring source pH of 8.3.

Importance: Hydrogen is a key intermediate in anaerobic metabolism, and with the development of a sulfide-insensitive microsensor for H2, it is now possible to study the microdistribution of H2 in stratified microbial communities such as the photosynthetic microbial mat investigated here. The ability to measure H2 profiles within the mat compared to previous measurements of H2 emission gives much more detailed information about the sources and sinks of H2 in such communities, and it was demonstrated that the high rates of H2 formation in the early morning when the mat was exposed to low light intensities might be explained by nitrogen fixation, where H2 is formed as a by-product.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4959218PMC
http://dx.doi.org/10.1128/AEM.00710-16DOI Listing

Publication Analysis

Top Keywords

microbial mat
12
μmol liter-1
12
early morning
12
mat
9
dynamics hot
8
hot spring
8
spring microbial
8
reaching peak
8
mat compared
8
situ hydrogen
4

Similar Publications

The earliest named stromatolite Cryptozoon Hall, 1884 (Late Cambrian, ca. 490 Ma, eastern New York State), was recently re-interpreted as an interlayered microbial mat and non-spiculate (keratosan) sponge deposit. This "classic stromatolite" is prominent in a fundamental debate concerning the significance or even existence of non-spiculate sponges in carbonate rocks from the Neoproterozoic (Tonian) onwards.

View Article and Find Full Text PDF

Widespread distribution of chlorophyll f-producing Leptodesmis cyanobacteria.

J Phycol

December 2024

School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China.

Chlorophyll (Chl) f was reported as the fifth Chl in oxygenic photoautotrophs. Chlorophyll f production expanded the utilization of photosynthetically active radiation into the far-red light (FR) region in some cyanobacterial genera. In this study, 11 filamentous cyanobacterial strains were isolated from FR-enriched habitats, including hydrophyte, moss, shady stone, shallow ditch, and microbial mat across Central and Southern China.

View Article and Find Full Text PDF

Investigations of the metabolic capabilities of anaerobic protists advances our understanding of the evolution of eukaryotic life on Earth and for uncovering analogous extraterrestrial complex microbial life. Certain species of foraminiferan protists live in environments analogous to early Earth conditions when eukaryotes evolved, including sulfidic, anoxic, and hypoxic sediment porewaters. Foraminifera are known to form symbioses as well as to harbor organelles from other eukaryotes (chloroplasts), possibly bolstering the host's independence from oxygen.

View Article and Find Full Text PDF

Understanding the roles of habitat filtering, dispersal limitations and biotic interactions in shaping the organization of animal communities is a central research goal in ecology. Attempts to extend these approaches into deep time have the potential to illuminate the role of these processes over key intervals in evolutionary history. The Ediacaran marks one such interval, recording the first macroscopic benthic communities and a stepwise intensification in animal ecosystem engineering.

View Article and Find Full Text PDF

Soil microbes are crucial for ecosystem health and functioning, playing key roles in decomposing organic matter, nutrient cycling, and carbon sequestration. Mycorrhizal fungi, a vital group of soil microbes, establish symbiotic relationships with plant roots, enhancing plant nutrient uptake and improving soil structure. Globally nitrogen (N) enrichment is recognized as a significant regulator of soil microbial communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!