A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Insights into the functionality and stability of designer cellulosomes at elevated temperatures. | LitMetric

Enzymatic breakdown of lignocellulose is a major limiting step in second generation biorefineries. Assembly of the necessary activities into designer cellulosomes increases the productivity of this step by enhancing enzyme synergy through the proximity effect. However, most cellulosomal components are obtained from mesophilic microorganisms, limiting the applications to temperatures up to 50 °C. We hypothesized that a scaffoldin, comprising modular components of mainly mesophilic origin, can function at higher temperatures when combined with thermophilic enzymes, and the resulting designer cellulosomes could be employed in higher temperature reactions. For this purpose, we used a tetravalent scaffoldin constituted of three cohesins of mesophilic origin as well as a cohesin and cellulose-binding module derived from the thermophilic bacterium Clostridium thermocellum. The scaffoldin was combined with four thermophilic enzymes from Geobacillus and Caldicellulosiruptor species, each fused with a dockerin whose specificity matched one of the cohesins. We initially verified that the biochemical properties and thermal stability of the resulting chimeric enzymes were not affected by the presence of the mesophilic dockerins. Then we examined the stability of the individual single-enzyme-scaffoldin complexes and the full tetravalent cellulosome showing that all complexes are stable and functional for at least 6 h at 60 °C. Finally, within this time frame and conditions, the full complex appeared over 50 % more efficient in the hydrolysis of corn stover compared to the free enzymes. Overall, the results support the utilization of scaffoldin components of mesophilic origin at relatively high temperatures and provide a framework for the production of designer cellulosomes suitable for high temperature biorefinery applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-016-7594-5DOI Listing

Publication Analysis

Top Keywords

designer cellulosomes
16
components mesophilic
12
mesophilic origin
12
combined thermophilic
8
thermophilic enzymes
8
mesophilic
5
insights functionality
4
functionality stability
4
designer
4
stability designer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!