The effect of calcium chloride concentration on alginate/Fmoc-diphenylalanine hydrogel networks.

Mater Sci Eng C Mater Biol Appl

Bioengineering Department, Hacettepe University, Ankara 06800, Turkey; Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Turkey. Electronic address:

Published: September 2016

Peptide based hydrogels gained a vast interest in the tissue engineering studies thanks to great superiorities such as biocompatibility, supramolecular organization without any need of additional crosslinker, injectability and tunable nature. Fmoc-diphenylalanine (FmocFF) is one of the earliest and widely used example of these small molecule gelators that have been utilized in biomedical studies. However, Fmoc-peptides are not feasible for long term use due to low stability and weak mechanical properties at neutral pH. In this study, Fmoc-FF dipeptides were mechanically enhanced by incorporation of alginate, a biocompatible and absorbable polysaccharide. The binary hydrogel is obtained via molecular self-assembly of FmocFF dipeptide in alginate solution followed by ionic crosslinking of alginate moieties with varying concentrations of calcium chloride. Hydrogel characterization was evaluated in terms of morphology, viscoelastic moduli and diffusional phenomena and the structures were tested as 3D scaffolds for bovine chondrocytes. In vitro evaluation of scaffolds lasted up to 14days and cell viability, sulphated glycosaminoglycan (sGAG) levels, collagen type II synthesis were determined. Our results showed that alginate incorporation into FmocFF hydrogels leads to better mechanical properties and higher stability with good biocompatibility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2016.04.084DOI Listing

Publication Analysis

Top Keywords

calcium chloride
8
mechanical properties
8
chloride concentration
4
concentration alginate/fmoc-diphenylalanine
4
alginate/fmoc-diphenylalanine hydrogel
4
hydrogel networks
4
networks peptide
4
peptide based
4
based hydrogels
4
hydrogels gained
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!