Silver (Ag) nanoparticles were electrochemically deposited on the film of a metformin functionalized multi-walled carbon nanotube modified glassy carbon electrode (Met-MWCNT/GCE), which fabricated an Ag@Met-MWCNT nanocomposite sensor (Ag@Met-MWCNT/GCE) to detect entacapone (ENT). The Ag@Met-MWCNT nanocomposite was characterized by field emission scanning electrochemical microscopy (FESEM), X-ray diffraction (XRD) analysis, FT-IR and electrochemical tests. The modified electrode showed a large electrocatalytic activity for reduction of ENT. This improved activity indicates that Met@MWCNT plays a crucial role in the dispersion and stabilization of Ag nanoparticles on GCE. Under the optimized conditions the linear range for the detection of the ENT was obtained to be 0.05 to 70.0μM with a low detection limit of 15.3nM. The proposed sensor can effectively analyse ENT concentration in pharmaceutical formulations and human urine samples, avoiding interference, and is a promising ENT sensor due to good sensitivity, stability and low cost.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2016.03.077 | DOI Listing |
Mikrochim Acta
December 2024
Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
GO/Co-MOF/PPy-350 (GPC-350) was synthesized by in situ growth of ultrafine Co-MOF on graphene oxide (GO), followed by encapsulation with polypyrrole (PPy) and calcination at 350.0℃. Meanwhile, MoS-MWCNTs (MoS-CNTs) were produced via the in situ synthesis of MoS within multi-walled carbon nanotubes (MWCNTs).
View Article and Find Full Text PDFBioelectrochemistry
December 2024
Louisiana Cancer Research Center, School of Medicine, 1700 Tulane Ave, New Orleans, Louisiana 70112, USA.
The folate receptor (FR) is a well-known biomarker that is overexpressed in many cancer cells, making it a valuable target for cancer diagnostics and therapeutic strategies. However, identifying cancer biomarkers remains a challenge due to factors such as lengthy procedures, high costs, and low sensitivity. This study presents the development of a novel, cost-effective biosensor designed for the detection of FR.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Former Japan Bioassay Research Center, Hadano 257-0015, Kanagawa, Japan.
The purpose of the present study is to contribute to the establishment of a standard method for evaluating the adverse effects of nanomaterials by intratracheal administration. Low and high doses of multi-walled carbon nanotubes (MWCNTs) were administered to rats in a single administration or the same final dose as the single administration but divided over four administrations. Bronchoalveolar lavage examination on day 14 showed an inflammatory reaction and cytotoxicity in the lung, generally greater at the higher dose, and tending to be greater in the rats with four administrations at both the low and high doses.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Gyedang College of General Education, Sangmyung University, 31 Sangmyungdae-Gil, Dongnam-Gu, Cheonan 31066, Republic of Korea.
The evolution of high-performance electrode materials has significantly impacted the development of real-time monitoring biosensors, emphasizing the need for compatibility with biomaterials and robust electrochemical properties. This work focuses on creating electrode materials utilizing single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), specifically examining their dispersion behavior and electrochemical characteristics. By using ultrasonic waves, we analyzed the dispersion of CNTs in various solvents, including N, N-dimethylformamide (DMF), deionized water (DW), ethanol, and acetone.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Biosciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India.
This study investigated the effect of various levels of OH-MWCNTs mediated seed priming on germination, growth, and biochemical responses of Indian mustard (Brassica juncea (L.) Czern. & Coss.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!