The very high residual degree of death and disease from atherosclerosis needs new approaches.

J Clin Lipidol

Department of Medicine, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA.

Published: September 2018

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacl.2016.01.002DOI Listing

Publication Analysis

Top Keywords

high residual
4
residual degree
4
degree death
4
death disease
4
disease atherosclerosis
4
atherosclerosis approaches
4
high
1
degree
1
death
1
disease
1

Similar Publications

Pituitary neuroendocrine tumors (PitNETS) are common intracranial tumors, but extrasellar or ectopic PitNETS are very rare and supposed to originate from some pituitary remnants. They are mostly found in sphenoidal sinus. But particularly, ectopic clival PitNETS are highly aggressive and can cause bone invasion and can be misdiagnosed as other lesions of the skull base such as chordomas.

View Article and Find Full Text PDF

Landfill leachate characteristics vary depending on the type of waste facilities accept, such as municipal solid waste (MSW), construction and demolition debris (CDD) and MSW incineration (MSWI) ash. Optimizing disposal and treatment practices requires a thorough understanding of the behaviour of leachates from different classifications of refuse. This study provides a critical analysis of variation in leachate quality among over 80 sites based on landfill category: MSW, bulky debris, MSWI ash and MSW-MSWI ash co-disposal.

View Article and Find Full Text PDF

Microfluidic isolation and release of live disseminated breast tumor cells in bone marrow.

PLoS One

March 2025

Department of Mechanical and Aerospace Engineering, Interdisciplinary Microsystems Group, Gainesville, Florida, United States of America.

Breast cancer represents a significant therapeutic challenge due to its aggressive nature and resistance to treatment. A major cause of treatment failure in breast cancer is the presence of rare, low-proliferative disseminated tumor cells (DTCs) in distant organs including the bone marrow. This study introduced a microfluidic-based approach to improve the immunodetection and isolation of these rare DTCs for downstream analysis, with an emphasis on optimizing immunocapture, release, and enrichment methods of live DTCs as compared to the standard approach for blood-borne circulating tumor cells (CTCs).

View Article and Find Full Text PDF

Minimal Residual Disease in Metastatic Soft Tissue Sarcoma.

Curr Treat Options Oncol

March 2025

Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.

Liquid biopsies represent a promising and minimally invasive approach to diagnosing and monitoring cancer. In recent years, studies across a multitude of solid organ malignancies have suggested the clinical utility of biomarkers such as circulating tumor DNA (ctDNA). Particular attention has been given to serial assessment of such biomarkers in an effort to detect minimal residual disease (MRD), in order to predict which patients may be at highest risk of relapse following curative-intent surgical or medical intervention.

View Article and Find Full Text PDF

Enhanced Tumor Ablation and Immune Activation Via Irreversible Electroporation and Functionalized Vermiculite Nanosheets.

Small

March 2025

State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China.

Irreversible electroporation (IRE) is a minimally invasive, non-thermal tumor ablation technique that induces nanoscale membrane perforation, leading to immunogenic cell death (ICD). However, IRE alone is limited by uneven electric field attenuation, incomplete tumor ablation, and the immunosuppressive nature of the tumor microenvironment. To address these challenges, a multifunctional nanomaterial, vermiculite nanosheets/calcium peroxide nanosheets (VMT/CaO NSs), is developed to enhance the efficacy of IRE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!