Aromatic chemistry on metallic surfaces is involved in many processes within the contexts of biomass valorization, pollutant degradation, or corrosion protection. Albeit theoretically and experimentally challenging, knowing the structure and the stability of aromatic compounds on such surfaces is essential to understand their properties. To gain insights on this topic, we performed periodic ab initio calculations on Pt(111) to determine a set of simple molecular descriptors that predict both the stability and the structure of aromatic adsorbates substituted with alkyl and alkoxy (or hydroxy) groups. While the van der Waals (vdW) interaction is controlled by the molecular weight and the deformation energy by both the nature and the relative position of the substituents to the surface, the chemical bonding can be correlated to the Hard and Soft Acids and Bases (HSAB) interaction energy. This work gives general insights on the interaction of aromatic compounds with the Pt(111) surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.6b00612 | DOI Listing |
Microbiome
January 2025
Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.
Background: The main application of cork is the production of stoppers for wine bottles. Cork sometimes contains 2,4,6-trichloroanisole, a compound that, at a concentration of ng/L, produces an unpleasant musty odor that destroys the organoleptic properties of wine and results in enormous economic losses for wineries and cork industries. Cork can exhibit a defect known as yellow stain, which is associated with high levels of 2,4,6-trichloroanisole.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Agro‑Environmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi‑ku, Fukuoka, 8190395, Japan.
Studies on the compounds of aromatic oils and their effects on psychophysiological changes in humans are often conducted separately. To obtain better validation, a suitable protocol is needed that can be extrapolated to large-scale olfactory stimulation experiments. Unfortunately, this type of study is still rarely performed.
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, S117585, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), S138602, Singapore. Electronic address:
Pseudomonas putida degraded 35 % of compounds in alkali-pretreated lignin liquor under nitrogen-replete conditions but with low polyhydroxyalkanoates (PHA) production, while limiting nitrogen supplement improved PHA content (PHA/dry cell weight) to 43 % at the expense of decreased lignin degradation of 22 %. Increase of initial cell biomass (0.1--1.
View Article and Find Full Text PDFChemosphere
January 2025
Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
Peroxyacetyl Nitrate (CHC(O)ONO, PAN), a typical secondary product of photochemical reactions, is well known to be a better photochemical indicator due to the only secondary photochemical source in the troposphere. Studies on PAN pollution are sparse in northwest China, resulting in a limited understanding of photochemical pollution in recent years. Herein, the measurement of PAN, O, volatile organic compounds (VOCs), NO, other related species, and meteorological parameters were conducted from May 1 to August 31, 2022, at an urban site in Lanzhou.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002 Saudi Arabia. Electronic address:
The discovery of novel anti-cancer drugs motivated us to synthesize a new series of triple 1,2,3-triazole-based arm scaffolds featuring distinct un functionalized alkyl and/or aryl side chains with possible anti-cancer action using the click chemistry approach under both conventional and green microwave irradiation (MWI) methods. The Cu(I) catalyzed cycloaddition reaction of targeted tris-alkyne with un functionalized aliphatic and aromatic azides has been adopted as an efficient approach for synthesizing the desired click adducts. Microwave irradiation improved the synthetic processes, resulting in higher yields and faster reaction times.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!