We introduce a general method for the stabilization and surface functionalization of hydrophobic nanoparticles using an amphiphilic copolymer, poly(maleic anhydride-alt-1-octadecene)-poly(ethylene glycol) methacrylate (PMAO-PEGMA). Coating nanoparticles with PMAO-PEGMA results in colloidally stable nanoparticles decorated with reactive carboxylic acid and methacrylate functionalities, providing a versatile platform for chemical reactions. The versatility and ease of surface functionalization is demonstrated by varying both the core material and the chemistry used. Specifically, the carboxylic acid functionalities are used to conjugate wheat germ agglutinin to conducting polymer nanoparticles via carbodiimide-mediated coupling, and the methacrylate groups are used to link cysteamine to the surface of poly(ε-caprolactone) nanoparticles via thiol-ene click chemistry and to link temperature-responsive polymer shells to the surface of gold nanoparticles via free radical polymerization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.6b00929DOI Listing

Publication Analysis

Top Keywords

surface functionalization
12
functionalization hydrophobic
8
carboxylic acid
8
nanoparticles
6
surface
5
versatile route
4
route colloidal
4
colloidal stability
4
stability surface
4
hydrophobic nanomaterials
4

Similar Publications

This study analyzes the influences of surface reactions on the natural convective flow, temperature, and oxygen concentration distributions in vertically placed multilayered cavities. A mathematical model for this problem is formulated with proper boundary conditions. At first, the governing equations are made dimensionless using the variable transformations.

View Article and Find Full Text PDF

Introduction The role of the condylar position in the correct functioning of the stomatognathic system has been the center of the study. Using cone-beam computed tomography (CBCT), this study looked at the three-dimensional (3D) position of the condylar bone in patients from Class I, Class II, Division 1, and Division 2. Materials and methods This cross-sectional, retrospective study was conducted using 102 CBCT records, with 34 records allocated to each category of malocclusion classification, such as dentoskeletal Class I, skeletal Class II, and dental Class II, Division 1 and 2.

View Article and Find Full Text PDF

Background: Uterine endometrial natural killer (uNK) cells represent major leukocytes in the mid-secretory phase of the cell cycle, and their number is further increased during early pregnancy. The activating and inhibitory receptors expressed on their surface mediate various functions of uNK cells, such as cytotoxicity, cytokine production, spiral artery remodeling, and self-recognition.

Methods: This study reviewed the most recent information (PubMed database, 175 articles included) regarding the activating and inhibitory receptors on uNK cells in human females with healthy pregnancies and the evidence indicating their significance in various reproductive failures.

View Article and Find Full Text PDF

Human Hair Follicle Mesenchymal Stem Cell-Derived Exosomes Attenuate UVB-Induced Photoaging via the miR-125b-5p/TGF-β1/Smad Axis.

Biomater Res

January 2025

Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.

Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.

View Article and Find Full Text PDF

Background/purpose: SimEx-Plus (EPED. Inc) was already a mature augmented reality (AR) dental training simulator that allowed students to have a high quality dental education practice. Now the EPCAD software has been further developed into a comprehensive computer-aided design software.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!