Clamping of RNA with PNA enables targeting of microRNA.

Org Biomol Chem

Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 83 Huddinge, Stockholm, Sweden.

Published: June 2016

To be able to target microRNAs also at stages where these are in a double stranded or hairpin form we have studied BisPNA designed to clamp the target and give sufficient affinity to allow for strand invasion. We show that BisPNA complexes are more stable with RNA than with DNA. In addition, 24-mer BisPNA (AntimiR) constructs form complexes with a hairpin RNA that is a model of the microRNA miR-376b, suggesting that PNA-clamping may be an effective way of targeting microRNAs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6ob00516kDOI Listing

Publication Analysis

Top Keywords

clamping rna
4
rna pna
4
pna enables
4
enables targeting
4
targeting microrna
4
microrna target
4
target micrornas
4
micrornas stages
4
stages double
4
double stranded
4

Similar Publications

Following transcript release during intrinsic termination, Escherichia coli RNA polymerase (RNAP) often remains associated with DNA in a post-termination complex (PTC). RNAPs in PTCs are removed from the DNA by the SWI2/SNF2 adenosine triphosphatase (ATPase) RapA. Here we determined PTC structures on negatively supercoiled DNA and with RapA engaged to dislodge the PTC.

View Article and Find Full Text PDF

Comparative analysis of adenosine 1 receptor expression and function in hippocampal and hypothalamic neurons.

Inflamm Res

January 2025

Medical Faculty and University Hospital, Institute of Neural and Sensory Physiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.

Background: Adenosine, an ATP degradation product, is a sleep pressure factor. The adenosine 1 receptor (A1R) reports sleep need. Histaminergic neurons (HN) of the tuberomamillary nucleus (TMN) fire exclusively during wakefulness and promote arousal.

View Article and Find Full Text PDF

Binding of to dystrophin impairs the membrane trafficking of Nav1.5 protein and increases ventricular arrhythmia susceptibility.

Elife

January 2025

Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China.

Dystrophin is a critical interacting protein of Nav1.5 that determines its membrane anchoring in cardiomyocytes. Long noncoding RNAs (lncRNAs) are involved in the regulation of cardiac ion channels, while their influence on sodium channels remains unexplored.

View Article and Find Full Text PDF

In asthma, tissue factor (TF) levels are elevated in the lung. In our previous studies using mechanically compressed human bronchial epithelial (HBE) cells, which are a well-defined in vitro model of bronchoconstriction during asthma exacerbations, we detected TF within extracellular vesicles (EVs) released from compressed HBE cells. Here, to better characterize the potential role of this mechanism in asthma, we tested the extent to which the transcriptional regulation of epithelial cell-derived TF varied between donors with and without asthma.

View Article and Find Full Text PDF

Aims: Hypertrophic cardiomyopathy (HCM) is characterized by unexplained left ventricular hypertrophy (LVH) with key pathologic processes including myocardial necrosis, fibrosis, inflammation, and hypertrophy, which are involved in heart failure (HF), stroke, and even sudden death. Our aim was to explore the communication network among various cells in the heart of transverse aortic constriction (TAC) surgery induced HCM mice.

Materials And Methods: Single-cell RNA-seq data of GSE137167 was downloaded from the Gene Expression Omnibus (GEO) database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!