We report on the first microscale observation of the velocity field imposed by a nonuniform heat content along the solid-liquid boundary. We determine both radial and vertical velocity components of this thermo-osmotic flow field by tracking single tracer nanoparticles. The measured flow profiles are compared to an approximate analytical theory and to numerical calculations. From the measured slip velocity we deduce the thermo-osmotic coefficient for both bare glass and Pluronic F-127 covered surfaces. The value for Pluronic F-127 agrees well with Soret data for polyethylene glycol, whereas that for glass differs from literature values and indicates the complex boundary layer thermodynamics of glass-water interfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.116.188303 | DOI Listing |
Phys Rev E
June 2024
School of Fundamental Science and Technology, Keio University, Yokohama 223-8522, Japan.
We consider a binary fluid mixture, which lies in the one-phase region near the demixing critical point, and study its transport through a capillary tube linking two large reservoirs. We assume that short-range interactions cause preferential adsorption of one component onto the tube's wall. The adsorption layer can become much thicker than the molecular size, which enables us to apply hydrodynamics based on a coarse-grained free-energy functional.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2023
School of Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom.
Thermo-osmosis refers to fluid migration due to the temperature gradient. The mechanistic understanding of thermo-osmosis in charged nano-porous media is still incomplete, while it is important for several environmental and energy applications, such as low-grade waste heat recovery, wastewater recovery, fuel cells, and nuclear waste storage. This paper presents results from a series of molecular dynamics simulations of thermo-osmosis in charged silica nanochannels that advance the understanding of the phenomenon.
View Article and Find Full Text PDFJ Colloid Interface Sci
May 2023
Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China. Electronic address:
Hypothesis: Particle transport by a temperature gradient is prospective in many biomedical applications. However, the prevalence of boundary confinement in practical use introduces synergistic effects of thermophoresis and thermo-osmosis, causing controversial phenomena and great difficulty in understanding the mechanisms.
Experiments: We developed a microfluidic chip with a uniform temperature gradient and switchable substrate hydrophilicity to measure the migrations of various particles (d = 200 nm - 2 μm), through which the effects of particle thermophoresis and thermo-osmotic flow from the substrate surface were decoupled.
Nat Commun
February 2022
Peter Debye Institute for Soft Matter Physics, Molecular Nanophotonics Group, Universität Leipzig, Linnéstr. 5, 04103, Leipzig, Germany.
Manipulation of nano-objects at the microscale is of great technological importance for constructing new functional materials, manipulating tiny amounts of fluids, reconfiguring sensor systems, or detecting tiny concentrations of analytes in medical screening. Here, we show that hydrodynamic boundary flows enable the trapping and manipulation of nano-objects near surfaces. We trigger thermo-osmotic flows by modulating the van der Waals and double layer interactions at a gold-liquid interface with optically generated local temperature fields.
View Article and Find Full Text PDFNanoscale
January 2021
Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK.
Understanding thermo-osmosis in nanoscale channels and pores is essential for both theoretical advances of thermally induced mass flow and a wide range of emerging industrial applications. We present a new mechanistic understanding and quantification of thermo-osmosis at nanometric/sub-nanometric length scales and link the outcomes with the non-equilibrium thermodynamics of the phenomenon. The work is focused on thermo-osmosis of water in quartz slit nanochannels, which is analysed by molecular dynamics (MD) simulations of mechano-caloric and thermo-osmotic systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!