Rheological Signature of Frictional Interactions in Shear Thickening Suspensions.

Phys Rev Lett

Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.

Published: May 2016

Colloidal shear thickening presents a significant challenge because the macroscopic rheology becomes increasingly controlled by the microscopic details of short ranged particle interactions in the shear thickening regime. Our measurements here of the first normal stress difference over a wide range of particle volume fractions elucidate the relative contributions from hydrodynamic lubrication and frictional contact forces, which have been debated. At moderate volume fractions we find N_{1}<0, consistent with hydrodynamic models; however, at higher volume fractions and shear stresses these models break down and we instead observe dilation (N_{1}>0), indicating frictional contact networks. Remarkably, there is no signature of this transition in the viscosity; instead, this change in the sign of N_{1} occurs while the shear thickening remains continuous. These results suggest a scenario where shear thickening is driven primarily by the formation of frictional contacts, with hydrodynamic forces playing a supporting role at lower concentrations. Motivated by this picture, we introduce a simple model that combines these frictional and hydrodynamic contributions and accurately fits the measured viscosity over a wide range of particle volume fractions and shear stress.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.116.188301DOI Listing

Publication Analysis

Top Keywords

shear thickening
20
volume fractions
12
interactions shear
8
wide range
8
range particle
8
particle volume
8
frictional contact
8
shear
6
frictional
5
thickening
5

Similar Publications

Article Synopsis
  • The study examines how the rheology (flow behavior) of ingested fluids affects swallowing and the physiological responses during deglutition, specifically comparing xanthan gum (XG) and sodium carboxymethylcellulose gum (CMC) in healthy adults.
  • Results showed that CMC had significantly higher viscosity than XG at higher shear rates (300 s), leading to increased flow resistance during swallowing, indicated by higher intrabolus pressure and altered relaxation times of the upper esophageal sphincter (UES).
  • The findings suggest that the differences in shear viscosity of these fluids affect pharyngeal function during swallowing, highlighting the importance of fluid properties over standardized viscosity levels (IDDSI).
View Article and Find Full Text PDF

A simple model of the rheological curve of HPAM solutions at different temperatures.

Sci Rep

December 2024

Laboratorio de Fluidodinámica, Facultad de Ingeniería, Universidad de Buenos Aires/CONICET, Paseo Colón 850 CABA, Buenos Aires, Argentina.

Article Synopsis
  • The oil and gas industry is grappling with climate change and resource depletion, prompting a shift towards enhanced recovery methods like polymer flooding, which boasts higher recovery rates and lower emissions.
  • Existing physical models for predicting polymer flooding outcomes need improvement, particularly in accurately modeling the flow behavior of polymer solutions.
  • The new PAMA-T model expands the original PAMA technique to make it applicable across a wider temperature range (298-343 K), enabling better predictions of rheological properties using minimal data input from viscosity measurements.
View Article and Find Full Text PDF

Preparation and Performance Evaluation of CO Foam Gel Fracturing Fluid.

Gels

December 2024

Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China.

The utilization of CO foam gel fracturing fluid offers several significant advantages, including minimal reservoir damage, reduced water consumption during application, enhanced cleaning efficiency, and additional beneficial properties. However, several current CO foam gel fracturing fluid systems face challenges, such as complex preparation processes and insufficient viscosity, which limit their proppant transport capacity. To address these issues, this work develops a novel CO foam gel fracturing fluid system characterized by simple preparation and robust foam stability.

View Article and Find Full Text PDF

A green chemical shear-thickening polishing (GC-STP) method was studied to improve the surface precision and processing efficiency of monocrystalline silicon. A novel green shear-thickening polishing slurry composed of silica nanoparticles, alumina abrasive, sorbitol, plant ash, polyethylene glycol, and deionized water was formulated. The monocrystalline silicon was roughly ground using a diamond polishing slurry and then the GC-STP process.

View Article and Find Full Text PDF

Hydrophobic association polymers containing various functional groups have a great deal of application potential as a self-thickening agent in carbonate acidification, while the improvement of their viscosification ability under high temperature conditions remains a significant challenge. A kind of betaine-type hydrophobic association polymer (PASD) intended for use as an acid thickener was synthesized through aqueous solution polymerization with sulfobetaine and a soluble hydrophobic monomer. The structure of PASD was characterized by FT-IR and H NMR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!