We report for the first time on the anticorrelated emission of high-order harmonics and energetic electron beams from a solid-density plasma with a sharp vacuum interface-plasma mirror-driven by an intense ultrashort laser pulse. We highlight the key role played by the nanoscale structure of the plasma surface during the interaction by measuring the spatial and spectral properties of harmonics and electron beams emitted by a plasma mirror. We show that the nanoscale behavior of the plasma mirror can be controlled by tuning the scale length of the electron density gradient, which is measured in situ using spatial-domain interferometry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.116.185001 | DOI Listing |
Nanomaterials (Basel)
December 2024
Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea.
Nanomaterial properties such as size, structure, and composition can be controlled by manipulating radiation, such as gamma rays, X-rays, and electron beams. This control allows scientists to create materials with desired properties that can be used in a wide range of applications, from electronics to medicine. This use of radiation for nanotechnology is revolutionizing the way we design and manufacture materials.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Institute of Materials Science and Engineering, Chemnitz University of Technology, Erfenschlager Straße 73, Chemnitz 09125, Germany.
The generation of laser-induced periodic surface structures (LIPSS) using femtosecond lasers facilitates the engineering of material surfaces with tailored functional properties. Numerous aspects of their complex formation process are still under debate, despite intensive theoretical and experimental research in recent decades. This particularly concerns the challenge of verifying approaches based on electromagnetic effects or hydrodynamic processes by experiment.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
Department of Physics, National Central University, Taoyuan 320317, Taiwan.
Scintillation screens are widely used to diagnose high-charge density, low-average current electron beams from laser wakefield accelerators (LWFAs). However, the absolute response between emitted photons and electron charge has only been calibrated at a limited number of facilities, and there have been discrepancies between these calibrations. In this report, we comprehensively revised the absolute charge calibration of two high relative brightness scintillating screens of LANEX Regular (Carestream) and PI200 (Mitsubishi) by employing the high-brightness photoinjector at the National Synchrotron Radiation Research Center (NSRRC), which provides electron beams with variable charges (50-350 pC per pulse) and energies (26.
View Article and Find Full Text PDFiScience
December 2024
School of Electrical and Information, ChangZhou Institute of Technology, ChangZhou 213032, China.
This article establishes a physical model of the interaction between surface electron beams and plasma with a transverse magnetic field. The dispersion relationship between electron beam and transverse magnetized plasma interaction was derived using perturbation method and field matching method, respectively. We studied the effects of magnetic field, plasma density, electron beam density, and electron beam velocity on radiation frequency and bandwidth.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China.
We present a novel resonance mode in capacitive radio frequency (rf) discharges in the presence of an oblique magnetic field at low pressures. We observe the self-excitation of high-frequency harmonics of the current in magnetized capacitive rf discharges through the magnetized plasma series resonance (MPSR) induced by applying a low-frequency power. Utilizing an equivalent circuit model, we reveal that these harmonics arise from the hybrid combination of the magnetic gyration of electrons and the PSR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!