ULK1 and ULK2 are thought to be essential for initiating autophagy, and Ulk1/2-deficient mice die perinatally of autophagy-related defects. Therefore, we used a conditional knockout approach to investigate the roles of ULK1/2 in the brain. Although the mice showed neuronal degeneration, the neurons showed no accumulation of P62(+)/ubiquitin(+) inclusions or abnormal membranous structures, which are observed in mice lacking other autophagy genes. Rather, neuronal death was associated with activation of the unfolded protein response (UPR) pathway. An unbiased proteomics approach identified SEC16A as an ULK1/2 interaction partner. ULK-mediated phosphorylation of SEC16A regulated the assembly of endoplasmic reticulum (ER) exit sites and ER-to-Golgi trafficking of specific cargo, and did not require other autophagy proteins (e.g., ATG13). The defect in ER-to-Golgi trafficking activated the UPR pathway in ULK-deficient cells; both processes were reversed upon expression of SEC16A with a phosphomimetic substitution. Thus, the regulation of ER-to-Golgi trafficking by ULK1/2 is essential for cellular homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4993601PMC
http://dx.doi.org/10.1016/j.molcel.2016.04.020DOI Listing

Publication Analysis

Top Keywords

er-to-golgi trafficking
16
essential cellular
8
cellular homeostasis
8
noncanonical role
4
role ulk/atg1
4
er-to-golgi
4
ulk/atg1 er-to-golgi
4
trafficking
4
trafficking essential
4
homeostasis ulk1
4

Similar Publications

The heterodimeric Rab3GAP complex is a guanine nucleotide exchange factor (GEF) for the Rab18 GTPase that regulates lipid droplet metabolism, ER-to-Golgi trafficking, secretion, and autophagy. Why both subunits of Rab3GAP are required for Rab18 GEF activity and the molecular basis of how Rab3GAP engages and activates its cognate substrate are unknown. Here we show that human Rab3GAP is conformationally flexible and potentially autoinhibited by the C-terminal domain of its Rab3GAP2 subunit.

View Article and Find Full Text PDF

Ceramide (Cer) is synthesized in the endoplasmic reticulum (ER) using sphinganine as the common backbone and is then transported to the Golgi apparatus to synthesize two complex sphingolipids, sphingomyelin (SM) and glucosylceramide (GlcCer). Brefeldin A (BFA) affects the structure of the Golgi apparatus, resulting in the redistribution of the Golgi proteins into the ER. Therefore, BFA has been used to examine the ER-to-Golgi trafficking of lipids, but the detailed lipid changes in cells upon BFA treatment are not fully understood.

View Article and Find Full Text PDF

Chloroquine (CQ), initially introduced for the clinical treatment of malaria, has subsequently been found to exhibit beneficial effects in combating diabetes mellitus. The anti-hyperglycemic properties of chloroquine may be attributed to its anti-inflammatory response and its ability to activate the insulin signaling pathway. However, both animal and clinical studies have yielded mixed results.

View Article and Find Full Text PDF

Membrane proteins targeted to the plasma membrane are first transported from the endoplasmic reticulum (ER) to the Golgi apparatus. This study explored the mechanisms controlling plasma membrane trafficking of the boric acid channel AtNIP5;1 from the ER. Imaging-based screening using transgenic Arabidopsis identified six mutants in which GFP-NIP5;1 was localized in the ER in addition to the plasma membrane.

View Article and Find Full Text PDF

Immediate early response 3 interacting-protein 1 (IER3IP1) is an endoplasmic reticulum resident protein, highly expressed in pancreatic cells and the developing brain cortex. Homozygous mutations in IER3IP1 have been found in individuals with microcephaly and neonatal diabetes, yet the underlying mechanism causing beta cell failure remains unclear. Here, we utilized differentiation of genome edited-stem cells into pancreatic islet cells to elucidate the molecular basis of IER3IP1 neonatal diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!