Vibrational normal mode calculations are presented for a DNA hexanucleoside pentaphosphate, d(CpGpCpGpCpG)2, and for its complex with the cationic intercalator ethidium. Two intercalation sites are modeled that differ in DNA backbone torsion angles. Normal mode frequencies for the DNA fragment itself are significantly lower than those reported earlier using different force fields, but an analysis of "effective" frequencies suggests that somewhat higher frequencies are more appropriate. Intercalation leads to significant lowering of mobility for the base pairs adjacent to the drug; in this sequence, the ethidium binding affects the guanosine atoms more strongly than the cytosine atoms. Motions of the bases and the intercalator are analyzed in terms of "twist" about the local helix axis and a "tilt" angle relative to this axis, and the results are compared to fluorescence studies of ethidium-DNA complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bip.360280406 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!