Replication of hepatitis C virus (HCV) is associated with the induction of oxidative stress, which is thought to play a major role in various liver pathologies associated with chronic hepatitis C. NS5A protein of the virus is one of the two key viral proteins that are known to trigger production of reactive oxygen species (ROS). To date it has been considered that NS5A induces oxidative stress by altering calcium homeostasis. Herein we show that NS5A-induced oxidative stress was only moderately inhibited by the intracellular calcium chelator BAPTA-AM and not at all inhibited by the drug that blocks the Ca(2+) flux from ER to mitochondria. Furthermore, ROS production was not accompanied by induction of ER oxidoreductins (Ero1), H2O2-producing enzymes that are implicated in the regulation of calcium fluxes. Instead, we found that NS5A contributes to ROS production by activating expression of NADPH oxidases 1 and 4 as well as cytochrome P450 2E1. These effects were mediated by domain I of NS5A protein. NOX1 and NOX4 induction was mediated by enhanced production of transforming growth factor β1 (TGFβ1). Thus, our data show that NS5A protein induces oxidative stress by several multistep mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855014 | PMC |
http://dx.doi.org/10.1155/2016/8341937 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!