Metabolic Engineering of Fusarium oxysporum to Improve Its Ethanol-Producing Capability.

Front Microbiol

Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology Luleå, Sweden.

Published: May 2016

Fusarium oxysporum is one of the few filamentous fungi capable of fermenting ethanol directly from plant cell wall biomass. It has the enzymatic toolbox necessary to break down biomass to its monosaccharides and, under anaerobic and microaerobic conditions, ferments them to ethanol. Although these traits could enable its use in consolidated processes and thus bypass some of the bottlenecks encountered in ethanol production from lignocellulosic material when Saccharomyces cerevisiae is used-namely its inability to degrade lignocellulose and to consume pentoses-two major disadvantages of F. oxysporum compared to the yeast-its low growth rate and low ethanol productivity-hinder the further development of this process. We had previously identified phosphoglucomutase and transaldolase, two major enzymes of glucose catabolism and the pentose phosphate pathway, as possible bottlenecks in the metabolism of the fungus and we had reported the effect of their constitutive production on the growth characteristics of the fungus. In this study, we investigated the effect of their constitutive production on ethanol productivity under anaerobic conditions. We report an increase in ethanol yield and a concomitant decrease in acetic acid production. Metabolomics analysis revealed that the genetic modifications applied did not simply accelerate the metabolic rate of the microorganism; they also affected the relative concentrations of the various metabolites suggesting an increased channeling toward the chorismate pathway, an activation of the γ-aminobutyric acid shunt, and an excess in NADPH regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854878PMC
http://dx.doi.org/10.3389/fmicb.2016.00632DOI Listing

Publication Analysis

Top Keywords

fusarium oxysporum
8
constitutive production
8
ethanol
6
metabolic engineering
4
engineering fusarium
4
oxysporum improve
4
improve ethanol-producing
4
ethanol-producing capability
4
capability fusarium
4
oxysporum filamentous
4

Similar Publications

In the present study, extracellular cell-free filtrate (CFF) of fungal Fusarium oxysporum f. sp. cucumerinum (FOC) species, was utilized to biosynthesize zinc oxide /zinc sulfide (ZnO/ZnS) nanocomposite.

View Article and Find Full Text PDF

wilt of banana is a major production constraint in India, prompting banana growers to replace bananas with less remunerative crops. Effective disease management practices thus need to be developed and implemented to prevent further spread and damage caused by f. sp.

View Article and Find Full Text PDF

Cucumber wilt disease, caused by f. sp. (FOC), is a major threat to cucumber production, especially in greenhouses.

View Article and Find Full Text PDF

Global Analysis of microRNA-like RNAs Reveals Differential Regulation of Pathogenicity and Development in Causing Apple Replant Disease.

J Fungi (Basel)

December 2024

State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.

This study investigated the expression profiles of microRNA-like RNAs (milRNAs) in (), a key pathogen causing Apple replant disease (ARD), across spore to mycelium formation stages. Using small RNA sequencing (sRNA-seq) and bioinformatics, we identified and analyzed milRNAs, revealing their targeting of 2364 mRNAs involved in 20 functional categories, including metabolic and cellular processes, based on gene ontology (GO) analysis. An analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that these mRNAs are related to carbohydrate and amino acid metabolism pathways.

View Article and Find Full Text PDF

Identification and Characterization of Endophytic Fungus DJE2023 Isolated from Banana ( sp. cv. Dajiao) with Potential for Biocontrol of Banana Fusarium Wilt.

J Fungi (Basel)

December 2024

Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.

This study characterized an endophytic fungus, DJE2023, isolated from healthy banana sucker of the cultivar (cv.) Dajiao. Its potential as a biocontrol agent against banana Fusarium wilt was assessed, aiming to provide a novel candidate strain for the biological control of the devastating disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!