Oncological miR-182-3p, a Novel Smooth Muscle Cell Phenotype Modulator, Evidences From Model Rats and Patients.

Arterioscler Thromb Vasc Biol

From the State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (L.S., R.Z., G.H., W.Z., Y.C., G.D.); Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Beijing, China (L.S., R.Z., G.H., W.Z., Y.C., G.D.); Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, China (Y.B., R.C., P.Y.); Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China (T.S.); and Department of Neurosurgery, PLA General Hospital, Haidian District, Beijing, China (F.W.).

Published: July 2016

Objective: Vascular smooth muscle cell (VSMC) phenotype change is a hallmark of vascular remodeling, which contributes to atherosclerotic diseases and can be regulated via microRNA-dependent mechanisms. We recently identified that asymmetrical dimethylarginine positively correlates to vascular remodeling-based diseases. We hypothesized that asymmetrical dimethylarginine induces smooth muscle cell (SMC) phenotypic change via a microRNA-dependent mechanism.

Approach And Results: Microarray analysis enabled the identification of downregulation of miR-182-3p in asymmetrical dimethylarginine-treated human aortic artery SMCs. The myeloid-associated differentiation marker (MYADM) was identified as the downstream target of miR-182-3p and implicated to contribute to miR-182-3p knockdown-mediated SMC phenotype change, which was evidenced by the increased proliferation and migration and reduced expression levels of phenotype-related genes in human aortic artery SMCs through the ERK/MAP (extracellular signal-regulated kinase/mitogen-activated protein) kinase-dependent mechanism. When inhibiting MYADM in the presence of miR-182-3p inhibitor or overexpressing MYADM in the presence of pre-miR-182-3p, human aortic artery SMCs were reversed to the differentiation phenotype. In vivo, adeno-miR-182-3p markedly suppressed carotid neointimal formation by using balloon-injured rat carotid artery model, specifically via decreased MYADM expression, whereas adeno-miR-182-3p inhibitor significantly promoted neointimal formation. Atherosclerotic lesions from patients with high asymmetrical dimethylarginine plasma levels exhibited decreased miR-182-3p expression levels and elevated MYADM expression levels.

Conclusions: miR-182-3p is a novel SMC phenotypic modulator by targeting MYADM.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.115.307412DOI Listing

Publication Analysis

Top Keywords

smooth muscle
12
muscle cell
12
asymmetrical dimethylarginine
12
human aortic
12
aortic artery
12
artery smcs
12
mir-182-3p novel
8
phenotype change
8
smc phenotypic
8
expression levels
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!