Arabinoxylan ferulate (AXF) foams were fabricated via enzymatic peroxidase/hydrogen peroxide crosslinking reaction followed by freeze-drying and studied as a potential wound dressing material. The AXF foam's rheological, morphological, porous, and swelling properties were examined. AXF foams were found to be a viscoelastic material that proved to be highly porous and water absorbent. AXF foams possessed low endotoxin levels and were cytocompatible with fibroblasts. Silver was successfully integrated into AXF foams and slowly released over 48 h. AXF foams impregnated with silver demonstrated efficacy inhibiting bacterial growth according to a modified Kirby-Bauer disk diffusion susceptibility test. Overall, AXF foams possess appropriate material properties and the silver-loaded AXF foams showed antimicrobial activity necessary to be a candidate material in wound dressing development. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2456-2465, 2016.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5108242PMC
http://dx.doi.org/10.1002/jbm.a.35783DOI Listing

Publication Analysis

Top Keywords

axf foams
28
wound dressing
12
foams
8
foams antimicrobial
8
axf
8
fabrication characterization
4
characterization vitro
4
vitro evaluation
4
evaluation silver-containing
4
silver-containing arabinoxylan
4

Similar Publications

Arabinoxylan ferulate (AXF) foams were fabricated via enzymatic peroxidase/hydrogen peroxide crosslinking reaction followed by freeze-drying and studied as a potential wound dressing material. The AXF foam's rheological, morphological, porous, and swelling properties were examined. AXF foams were found to be a viscoelastic material that proved to be highly porous and water absorbent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!