Resonance Raman vibrational spectra of the retinal chromophore in bathorhodopsin have been obtained after regenerating bovine visual pigments with an extensive series of 13C- and deuterium-labeled retinals. A low-temperature spinning cell technique was used to produce high-quality bathorhodopsin spectra exhibiting resolved hydrogen out-of-plane wagging vibrations at 838, 850, 858, 875, and 921 cm-1. The isotopic shifts and a normal coordinate analysis permit the assignment of these lines to the HC7 = C8H Bg, C14H, C12H, C10H, and C11H hydrogen out-of-plane wagging modes, respectively. The coupling constant between the C11H and C12H wags as well as the C12H wag force constant are unusually low compared to those of retinal model compounds. This quantitatively confirms the lack of coupling between the C11H and C12H wags and the low C12H wag vibrational frequency noted earlier by Eyring et al. [(1982) Biochemistry 21, 384]. The force constants for the C10H and C14H wags are also significantly below the values observed in model compounds. We suggest that the perturbed hydrogen out-of-plane wagging and C-C stretching force constants for the C10-C11 = C12-C13 region of the chromophore in bathorhodopsin result from electrostatic interactions with a charged protein residue. This interaction may also contribute to the 33 kcal/mol energy storage in bathorhodopsin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00430a012 | DOI Listing |
Adv Mater
December 2024
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
Carbon-supported single-atom catalysts exhibit exceptional properties in acidic CO reduction. However, traditional carbon supports fall short in building high-site-utilization and CO-rich interfacial environments, and the structural evolution of single-atom metals and catalytic mechanisms under realistic conditions remain ambiguous. Herein, an interconnected mesoporous carbon nanofiber and carbon nanosheet network (IPCF@CS) is reported, derived from microphase-separated block copolymer, to improve catalytic efficiency of isolated Ni.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
The elastic response of chromium-tanned leather was successfully improved by treatment with XSBR, a carboxylated styrene-butadiene copolymer. The carboxylic groups pending from a styrene-butadiene rubber (SBR) backbone were found to promote penetration of the aqueous polymer dispersion into the fibrous tanned leather and participated in pH-reversible physical crosslinking by H-bonding. The different penetrations of XSBR or SBR were investigated using a micro-FTIR cross-sectional analysis from the grain (outer) to the flesh (inner) side of 18 wt% elastomer-treated samples, based on the shaved leather weight.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
Understanding how alcohol molecules interact with the Brønsted acid sites (BAS) of zeolites is a prerequisite to the design of zeolite catalysts and catalytic processes. Here, we report IR spectra for the adsorption of ethanol on a highly crystalline sample of H-ZSM-5 zeolites exposed to ethanol gas at increasing pressure. We use density functional theory in combination with a FERMI resonance model to assign the measured spectra to a single adsorbed ethanol molecule per BAS.
View Article and Find Full Text PDFBeilstein J Nanotechnol
November 2024
Department of Physics, Applied Science Cluster, School of Advanced Engineering, University of Petroleum and Energy Studies (UPES), Bidholi via Premnagar, Dehradun, Uttarakhand 248007, India.
High mechanical strength, excellent thermal and electrical conductivity, and tunable properties make two-dimensional (2D) materials attractive for various applications. However, the metallic nature of these materials restricts their applications in specific domains. Strain engineering is a versatile technique to tailor the distribution of energy levels, including bandgap opening between the energy bands.
View Article and Find Full Text PDFJ Phys Chem B
November 2024
Faculdade de Engenharia Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-852, Brazil.
Under confinement, the water dielectric constant is a second-order tensor with an abnormally low out-of-plane element. In our work, we investigate the dielectric tensor of an aqueous NaCl solution confined by a quartz slit-pore. The static dielectric constant is determined from local polarization density fluctuations via molecular dynamics simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!