Transgenic growth hormone mice (TGM) are a recognized model of accelerated aging with characteristics including chronic oxidative stress, reduced longevity, mitochondrial dysfunction, insulin resistance, muscle wasting, and elevated inflammatory processes. Growth hormone/IGF-1 activate the Target of Rapamycin known to promote aging. TGM particularly express severe cognitive decline. We previously reported that a multi-ingredient dietary supplement (MDS) designed to offset five mechanisms associated with aging extended longevity, ameliorated cognitive deterioration and significantly reduced age-related physical deterioration in both normal mice and TGM. Here we report that TGM lose more than 50% of cells in midbrain regions, including the cerebellum and olfactory bulb. This is comparable to severe Alzheimer's disease and likely explains their striking age-related cognitive impairment. We also demonstrate that the MDS completely abrogates this severe brain cell loss, reverses cognitive decline and augments sensory and motor function in aged mice. Additionally, histological examination of retinal structure revealed markers consistent with higher numbers of photoreceptor cells in aging and supplemented mice. We know of no other treatment with such efficacy, highlighting the potential for prevention or amelioration of human neuropathologies that are similarly associated with oxidative stress, inflammation and cellular dysfunction. Environ. Mol. Mutagen. 57:382-404, 2016. © 2016 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/em.22019 | DOI Listing |
Nutrients
December 2024
Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada.
Background: Anabolic resistance accelerates muscle loss in aging and obesity, thus predisposing to sarcopenic obesity.
Methods: In this retrospective analysis of a randomized clinical trial, we examined baseline predictors of the adaptive response to three months of home-based resistance exercise, daily physical activity, and protein-based, multi-ingredient supplementation (MIS) in a cohort of free-living, older males ( = 32).
Results: Multiple linear regression analyses revealed that obesity and a Global Risk Index for metabolic syndrome (MetS) were the strongest predictors of Δ% gains in lean mass (TLM and ASM), LM/body fat ratios (TLM/%BF, ASM/FM, and ASM/%BF), and allometric LM (ASMI, TLM/BW, TLM/BMI, ASM/BW), with moderately strong, negative correlations to the adaptive response to polytherapy r = -0.
Neurol Int
December 2024
Department of Human Studies, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
The purpose of this review is to compile and discuss available evidence in humans on the efficacy of YHM supplementation on performance in different exercise modalities. Yohimbine (YHM) is a naturally occurring alkaloid that induces increases in sympathetic nervous system (SNS) activation effectively initiating "fight or flight" responses. In supplement form, YHM is commonly sold as an isolated product or combined into multi-ingredient exercise supplements and is widely consumed in fitness settings despite the lack of empirical support until recently.
View Article and Find Full Text PDFJ Physiol Investig
November 2024
Department of Sport Performance, National Taiwan University of Sport, Taichung, Taiwan.
Eccentric exercise and collisions that lead to muscle damage are common place among athletes. This study aimed to investigate the effect of a multi-ingredient supplement (MIS), containing the extracts of turmeric, chicken meat, and apple and ancient peat, on markers of muscle damage in collegiate male players following a rugby match. A position-matched, double-blind, randomized, and crossover design was employed in this study.
View Article and Find Full Text PDFMed Sci Sports Exerc
November 2024
Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA.
Introduction: Skeletal muscle satellite cells (SC) contribute to the adaptive process of resistance exercise training (RET) and may be influenced by nutritional supplementation. However, little research exists on the impact of multi-ingredient supplementation on the SC response to RET.
Purpose: We tested the effect of a multi-ingredient supplement (MIS) including whey protein, creatine, leucine, calcium citrate, and vitamin D on SC content and activity as well as myonuclear accretion, SC and myonuclear domain compared with a collagen control (COL) throughout a 10-wk RET program.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!