Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
1,3-Butadiene (1,3-BD) is a high-value chemical intermediate used mainly as a monomer for the production of synthetic rubbers. The ability to source 1,3-BD from biomass is of considerable current interest because it offers the potential to reduce the life-cycle greenhouse gas (GHG) impact associated with 1,3-BD production from petroleum-derived naphtha. Herein, we report the development and investigation of a new catalyst and process for the one-step conversion of ethanol to 1,3-BD. The catalyst is prepared by the incipient impregnation of magnesium oxide onto a silica support followed by the deposition of Au nanoparticles by deposition-precipitation. The resulting Au/MgO-SiO2 catalyst exhibits a high activity and selectivity to 1,3-BD and low selectivities to diethyl ether, ethylene, and butenes. Detailed characterization of the catalyst shows that the desirable activity and selectivity of Au/MgO-SiO2 are a consequence of a critical balance between the acidic-basic sites associated with a magnesium silicate hydrate phase and the redox properties of the Au nanoparticles. A process for the conversion of ethanol to 1,3-BD, which uses our catalyst, is proposed and analyzed to determine the life-cycle GHG impact of the production of this product from biomass-derived ethanol. We show that 1,3-BD produced by our process can reduce GHG emissions by as much as 155 % relative to the conventional petroleum-based production of 1,3-BD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201600195 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!