Purpose: To investigate the feasibility of estimating the proton-density fat fraction (PDFF) using a 7.1T magnetic resonance imaging (MRI) system and to compare the accuracy of liver fat quantification using different fitting approaches.

Materials And Methods: Fourteen leptin-deficient ob/ob mice and eight intact controls were examined in a 7.1T animal scanner using a 3D six-echo chemical shift-encoded pulse sequence. Confounder-corrected PDFF was calculated using magnitude (magnitude data alone) and combined fitting (complex and magnitude data). Differences between fitting techniques were compared using Bland-Altman analysis. In addition, PDFFs derived with both reconstructions were correlated with histopathological fat content and triglyceride mass fraction using linear regression analysis.

Results: The PDFFs determined with the use of both reconstructions correlated very strongly (r = 0.91). However, small mean bias between reconstructions demonstrated divergent results (3.9%; confidence interval [CI] 2.7-5.1%). For both reconstructions, there was linear correlation with histopathology (combined fitting: r = 0.61; magnitude fitting: r = 0.64) and triglyceride content (combined fitting: r = 0.79; magnitude fitting: r = 0.70).

Conclusion: Liver fat quantification using the PDFF derived from MRI performed at 7.1T is feasible. PDFF has strong correlations with histopathologically determined fat and with triglyceride content. However, small differences between PDFF reconstruction techniques may impair the robustness and reliability of the biomarker at 7.1T. J. Magn. Reson. Imaging 2016;44:1425-1431.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5116293PMC
http://dx.doi.org/10.1002/jmri.25319DOI Listing

Publication Analysis

Top Keywords

combined fitting
12
proton-density fat
8
fat fraction
8
fitting
8
liver fat
8
fat quantification
8
magnitude data
8
reconstructions correlated
8
magnitude fitting
8
triglyceride content
8

Similar Publications

This study combines experimental techniques and mathematical modeling to investigate the dynamics of C. elegans body-wall muscle cells. Specifically, by conducting voltage clamp and mutant experiments, we identify key ion channels, particularly the L-type voltage-gated calcium channel (EGL-19) and potassium channels (SHK-1, SLO-2), which are crucial for generating action potentials.

View Article and Find Full Text PDF

The remediation of wastewaters contaminated with dyes (discharged mainly from industry) is very important for preserving environmental quality and human health. In this study, a new composite chitosan (CS)-based adsorbent combined with activated carbon (AC) and curcumin (Cur) (abbreviated hereafter as CS/AC@Cur) in three different ratios (12.5%, 25%, and 50%) was synthesized for the removal of anionic [reactive black 5 (RB5)] and cationic [methylene blue (MB)] dyes in single-component or binary systems.

View Article and Find Full Text PDF

Zebrafish models of genetic epilepsy benefit from the ability to assess disease-relevant knock-out alleles with numerous tools, including genetically encoded calcium indicators (GECIs) and hypopigmentation alleles to improve visualization. However, there may be unintended effects of these manipulations on the phenotypes under investigation. There is also debate regarding the use of stable loss-of-function (LoF) alleles in zebrafish, due to genetic compensation (GC).

View Article and Find Full Text PDF

Objective: To observe and measure the morphological and temporal evolutionary features of the hypersynchronous (HYP) pattern in the mesial temporal seizure.

Methods: The HYP patterns during preictal and interictal states of 16 mesial temporal epileptic patients were analyzed. The wave components of the HYP transients were firstly observed and measured.

View Article and Find Full Text PDF

Refinement of Atomic Polarizabilities for a Polarizable Gaussian Multipole Force Field with Simultaneous Considerations of Both Molecular Polarizability Tensors and In-Solution Electrostatic Potentials.

J Chem Inf Model

January 2025

Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States.

Atomic polarizabilities are considered to be fundamental parameters in polarizable molecular mechanical force fields that play pivotal roles in determining model transferability across different electrostatic environments. In an earlier work, the atomic polarizabilities were obtained by fitting them to the B3LYP/aug-cc-pvtz molecular polarizability tensors of mainly small molecules. Taking advantage of the recent PCMRESPPOL method, we refine the atomic polarizabilities for condensed-phase simulations using a polarizable Gaussian Multipole (pGM) force field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!