3D Printing in the Laboratory: Maximize Time and Funds with Customized and Open-Source Labware.

J Lab Autom

Bioinformatics and Computational Biosciences Branch, Bethesda, MD, USA

Published: August 2016

3D printing, also known as additive manufacturing, is the computer-guided process of fabricating physical objects by depositing successive layers of material. It has transformed manufacturing across virtually every industry, bringing about incredible advances in research and medicine. The rapidly growing consumer market now includes convenient and affordable "desktop" 3D printers. These are being used in the laboratory to create custom 3D-printed equipment, and a growing community of designers are contributing open-source, cost-effective innovations that can be used by both professionals and enthusiasts. User stories from investigators at the National Institutes of Health and the biomedical research community demonstrate the power of 3D printing to save valuable time and funding. While adoption of 3D printing has been slow in the biosciences to date, the potential is vast. The market predicts that within several years, 3D printers could be commonplace within the home; with so many practical uses for 3D printing, we anticipate that the technology will also play an increasingly important role in the laboratory.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380887PMC
http://dx.doi.org/10.1177/2211068216649578DOI Listing

Publication Analysis

Top Keywords

printing
5
printing laboratory
4
laboratory maximize
4
maximize time
4
time funds
4
funds customized
4
customized open-source
4
open-source labware
4
labware printing
4
printing additive
4

Similar Publications

Bone Tissue Engineering: From Biomaterials to Clinical Trials.

Adv Exp Med Biol

January 2025

Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India.

Bone tissue engineering is a promising field that aims to rebuild the bone tissue using biomaterials, cells, and signaling molecules. Materials like natural and synthetic polymers, inorganic materials, and composite materials are used to create scaffolds that mimic the hierarchical microstructure of bone. Stem cells, particularly mesenchymal stem cells (MSCs), play a crucial role in bone tissue engineering by promoting tissue regeneration and modulating the immune response.

View Article and Find Full Text PDF

High-Security Data Encryption Enabled by DNA Multi-Strand Solid-Phase Hybridization and Displacement in Inkjet-Printed Microarrays.

ACS Appl Mater Interfaces

January 2025

Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.

Multicolor fluorescent encryption systems that respond to specific stimuli have drawn widespread attention to data storage and encryption due to their low cost and facile data access. However, existing encryption systems are limited by encryption materials, restricting their encryption depth. This study uses DNA molecules as encryption materials that offer exceptional specificity and encryption depth within sequences.

View Article and Find Full Text PDF

Aims: To compare the efficacy of an online exercise programme with that of standard physical activity recommendations for weight management.

Methods: We conducted an unblinded randomised controlled trial involving individuals with obesity. The study group received dietary advice and participated in an online exercise programme, while the control group received dietary advice and exercise guidance via printed documents.

View Article and Find Full Text PDF

The study of the neural circuitry underlying complex mammalian decision-making, particularly cognitive flexibility, is critical for understanding psychiatric disorders. To test cognitive flexibility, as well as potentially other decision-making paradigms involving multimodal sensory perception, we developed FlexRig, an open-source, modular behavioral platform for use in head-fixed mice. FlexRig enables the administration of tasks relying upon olfactory, somatosensory, and/or auditory cues and employing left and right licking as a behavior readout and reward delivery mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!