Understanding the drivers of species occrrece s a fundamenal goal in basic and applied ecology. Occupancy models have emerged as a popular approach for inferring species occurrence because they account for problems associated with imperfect detection in field surveys. Current models, however, are limited because they assume covariates are independent (i.e., indirect effects do not occur). Here, we combined structural equation and occupancy models to investigate complex influences on species occurrence while accounting for imperfect detection. These two methods are inherently compatible because they both provide means to make inference on latent or unobserved quantities based on observed data. Our models evaluated the direct and indirect roles of cattle grazing, water chemistry, vegetation, nonnative fishes, and pond permanence on the occurrence of six pond-breeding amphibians, two of which are threatened: the California tiger salamander (Ambysloma californiense) and the California red-legged frog (Rana draytonil). While cattle had strong effects on pond vegetation and water chemistry, their overall effects on amphibian occurrence were small compared to the consistently negative effects of nonnative fish. Fish strongly reduced occurrence probabilities for four of five native amphibians, including both species of conservation concern. These results could help to identify drivers of amphibian declines and to prioritize strategies for amphibian conservation. More generally, this approach facilitates a more mechanistic representation of ideas about the causes of species distributions in space and time. As shown here, occupancy modeling and structural equation modeling are readily combined, and bring rich sets of techniques that may provide unique theoretical and applied insights into basic ecological questions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877056PMC

Publication Analysis

Top Keywords

occupancy models
12
structural equation
12
species occurrence
12
imperfect detection
8
water chemistry
8
models
6
species
6
occurrence
6
integrating occupancy
4
models structural
4

Similar Publications

Ranking Single Fluorescent Protein-Based Calcium Biosensor Performance by Molecular Dynamics Simulations.

J Chem Inf Model

December 2024

Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey.

Genetically encoded fluorescent biosensors (GEFBs) have become indispensable tools for visualizing biological processes A typical GEFB is composed of a sensory domain (SD) that undergoes a conformational change upon ligand binding or enzymatic reaction; the SD is genetically fused with a fluorescent protein (FP). The changes in the SD allosterically modulate the chromophore environment whose spectral properties are changed. Single fluorescent (FP)-based biosensors, a subclass of GEFBs, offer a simple experimental setup; they are easy to produce in living cells, structurally stable, and simple to use due to their single-wavelength operation.

View Article and Find Full Text PDF

LDB1 establishes multi-enhancer networks to regulate gene expression.

Mol Cell

December 2024

Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. Electronic address:

How specific enhancer-promoter pairing is established remains mostly unclear. Besides the CTCF/cohesin machinery, few nuclear factors have been studied for a direct role in physically connecting regulatory elements. Using a murine erythroid cell model, we show via acute degradation experiments that LDB1 directly and broadly promotes connectivity among regulatory elements.

View Article and Find Full Text PDF

Transcription activators trigger transcript production by RNA Polymerase II (RNApII) via the Mediator coactivator complex. Here the dynamics of activator, Mediator, and RNApII binding at promoter DNA were analyzed using multi-wavelength single-molecule microscopy of fluorescently labeled proteins in budding yeast nuclear extract. Binding of Mediator and RNApII to the template required activator and an upstream activator sequence (UAS), but not a core promoter.

View Article and Find Full Text PDF

Predicting electronic screening for fast Koopmans spectral functional calculations.

NPJ Comput Mater

December 2024

Center for Scientific Computing, Theory and Data, Paul Scherrer Institute, 5352 Villigen PSI, Switzerland.

Koopmans spectral functionals are a powerful extension of Kohn-Sham density-functional theory (DFT) that enables the prediction of spectral properties with state-of-the-art accuracy. The success of these functionals relies on capturing the effects of electronic screening through scalar, orbital-dependent parameters. These parameters have to be computed for every calculation, making Koopmans spectral functionals more expensive than their DFT counterparts.

View Article and Find Full Text PDF

Background This comparative study evaluates the performance of medical/surgical and mixed intensive care units (ICUs) at a tertiary care university hospital in Riyadh, Saudi Arabia, using key performance indicators (KPIs). Since its establishment in 1982, the hospital has provided comprehensive medical services, including specialized, closed-model ICUs, including medical, surgical, and pediatric ICUs. In 2021, these ICUs transitioned to a mixed ICU model to enhance efficiency and patient care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!