The Small Molecule IMR-1 Inhibits the Notch Transcriptional Activation Complex to Suppress Tumorigenesis.

Cancer Res

Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, Florida. Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.

Published: June 2016

AI Article Synopsis

  • Aberrant Notch activity is linked to cancer initiation and maintenance, influencing cancer stem cells, metastasis, and therapy resistance, making it a valuable therapeutic target.
  • Current research has not sufficiently explored the potential targets within the Notch pathway, and there are no existing small-molecule inhibitors directly targeting the Notch transcriptional activation complex.
  • The study introduces a new small-molecule inhibitor, IMR-1, which disrupts the Notch complex assembly, reduces Notch target gene transcription, inhibits growth in Notch-dependent cell lines, and has potential as a novel anticancer therapy.

Article Abstract

In many cancers, aberrant Notch activity has been demonstrated to play a role in the initiation and maintenance of the neoplastic phenotype and in cancer stem cells, which may allude to its additional involvement in metastasis and resistance to therapy. Therefore, Notch is an exceedingly attractive therapeutic target in cancer, but the full range of potential targets within the pathway has been underexplored. To date, there are no small-molecule inhibitors that directly target the intracellular Notch pathway or the assembly of the transcriptional activation complex. Here, we describe an in vitro assay that quantitatively measures the assembly of the Notch transcriptional complex on DNA. Integrating this approach with computer-aided drug design, we explored potential ligand-binding sites and screened for compounds that could disrupt the assembly of the Notch transcriptional activation complex. We identified a small-molecule inhibitor, termed Inhibitor of Mastermind Recruitment-1 (IMR-1), that disrupted the recruitment of Mastermind-like 1 to the Notch transcriptional activation complex on chromatin, thereby attenuating Notch target gene transcription. Furthermore, IMR-1 inhibited the growth of Notch-dependent cell lines and significantly abrogated the growth of patient-derived tumor xenografts. Taken together, our findings suggest that a novel class of Notch inhibitors targeting the transcriptional activation complex may represent a new paradigm for Notch-based anticancer therapeutics, warranting further preclinical characterization. Cancer Res; 76(12); 3593-603. ©2016 AACR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911243PMC
http://dx.doi.org/10.1158/0008-5472.CAN-16-0061DOI Listing

Publication Analysis

Top Keywords

transcriptional activation
20
activation complex
20
notch transcriptional
16
notch
9
assembly notch
8
transcriptional
6
complex
6
activation
5
small molecule
4
molecule imr-1
4

Similar Publications

The prognosis of B cell acute lymphoblastic leukemia (B-ALL) is poor, primarily due to drug resistance and relapse. Ga15, encoded by GNA15, belongs to the G protein family, with G protein-coupled receptors playing a crucial role in multiple biological process. GNA15 has been reported to be involved in various malignancies; however, its potential role in B-ALL remain unknown.

View Article and Find Full Text PDF

Upon stimulation and activation, mast cells (MCs) release soluble mediators, including histamine, proteases, and cytokines. These mediators are often stored within cytoplasmic granules in MCs and may be released in a granulated form. The secretion of cytokines and chemokines occurs within hours following activation, with the potential to result in chronic inflammation.

View Article and Find Full Text PDF

ETV2/ER71, an ETS (E-twenty six) transcription factor, is critical for hematopoiesis and vascular development. However, research about the molecular mechanisms behind ETV2-mediated gene transcription is limited. Herein, we demonstrate that ETV2 and KDM4A, an H3K9 demethylase, regulate hematopoietic and endothelial genes.

View Article and Find Full Text PDF

G protein-coupled receptor (GPCR) signalling pathways underlie numerous physiological processes, are implicated in many diseases and are major targets for therapeutics. There are more than 800 GPCRs, which together transduce a vast array of extracellular stimuli into a variety of intracellular signals via heterotrimeric G protein activation and multiple downstream effectors. A key challenge in cell biology research and the pharmaceutical industry is developing tools that enable the quantitative investigation of GPCR signalling pathways to gain mechanistic insights into the varied cellular functions and pharmacology of GPCRs.

View Article and Find Full Text PDF

GhWRKY207 improves drought tolerance through promoting the expression of GhCSD3 and GhFSD2 in Gossypium hirsutum.

Plant Sci

January 2025

National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China. Electronic address:

Tryptophan-arginine-lysine-tyrosine (WRKY) transcription factors are essential regulators of drought tolerance in multiple plants. However, whether and how GhWRKY207 modulates cotton response to drought stress is unclear. In this study, we determined that GhWRKY207 expression was high in leaves and induced by drought stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!