A Plasmonic Temperature-Sensing Structure Based on Dual Laterally Side-Coupled Hexagonal Cavities.

Sensors (Basel)

School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China.

Published: May 2016

A plasmonic temperature-sensing structure, based on a metal-insulator-metal (MIM) waveguide with dual side-coupled hexagonal cavities, is proposed and numerically investigated by using the finite-difference time-domain (FDTD) method in this paper. The numerical simulation results show that a resonance dip appears in the transmission spectrum. Moreover, the full width of half maximum (FWHM) of the resonance dip can be narrowed down, and the extinction ratio can reach a maximum value by tuning the coupling distance between the waveguide and two cavities. Based on a linear relationship between the resonance dip and environment temperature, the temperature-sensing characteristics are discussed. The temperature sensitivity is influenced by the side length and the coupling distance. Furthermore, for the first time, two concepts-optical spectrum interference (OSI) and misjudge rate (MR)-are introduced to study the temperature-sensing resolution based on spectral interrogation. This work has some significance in the design of nanoscale optical sensors with high temperature sensitivity and a high sensing resolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883397PMC
http://dx.doi.org/10.3390/s16050706DOI Listing

Publication Analysis

Top Keywords

resonance dip
12
plasmonic temperature-sensing
8
temperature-sensing structure
8
structure based
8
side-coupled hexagonal
8
hexagonal cavities
8
coupling distance
8
temperature sensitivity
8
based
4
based dual
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!