Key Developments in Ionic Liquid Crystals.

Int J Mol Sci

Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.

Published: May 2016

Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4881553PMC
http://dx.doi.org/10.3390/ijms17050731DOI Listing

Publication Analysis

Top Keywords

liquid crystals
16
ionic liquid
12
crystals ionic
8
key developments
4
ionic
4
developments ionic
4
liquid
4
crystals
4
crystals materials
4
materials combine
4

Similar Publications

The peculiarities of the crystal formation from supersaturated aqueous solutions of CuSO on polymer substrates were studied using X-ray diffractometry. During the crystal formation, the test solutions were irradiated with one or two counter-propagating ultrasonic beams. Test solutions were prepared using natural deionized water with a deuterium content of 157 ± 1 ppm.

View Article and Find Full Text PDF

The Guangyuan kiln, located in the Sichuan Province, Southwest China during the Song Dynasty (960-1279 A.D.), is renowned for its high-temperature iron-series glazed wares, including pure black glazed ware, hare's fur glazed ware, glossy brown glazed ware, and matte brown glazed ware.

View Article and Find Full Text PDF

Effective modifications for the buried interface between self-assembled monolayers (SAMs) and perovskites are vital for the development of efficient, stable inverted perovskite solar cells (PSCs) and their tandem photovoltaics. Herein, an ionic-liquid-SAM hybrid strategy is developed to synergistically optimize the uniformity of SAMs and the crystallization of perovskites above. Specifically, an ionic liquid of 1-butyl-3-methyl-1H-imidazol-3-iumbis((trifluoromethyl)sulfonyl)amide (BMIMTFSI) is incorporated into the SAM solution, enabling reduced surface roughness, improved wettability, and a more evenly distributed surface potential of the SAM film.

View Article and Find Full Text PDF

The locomotion of various organisms relies on the alternated elongation-contraction of their muscles or bodies. Such biomimicry can offer a promising approach to developing soft robotic devices with improved mobility and efficiency. Most strategies to mimic such motions rely on reversible size modifications of some materials upon exposure to external stimuli.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how enhanced oil recovery using carbon dioxide (CO) alters the properties of crude oil, specifically focusing on wax characteristics and viscosity changes.
  • As the treatment pressure increases from atmospheric levels to higher pressures (up to 25 MPa), notable changes in the composition of crude oil occur, including decreases in light hydrocarbons and increases in paraffins and wax.
  • Treatment with supercritical CO (scCO) leads to smaller wax crystal sizes and increased viscosity, with significant enhancements in gelation characteristics and wax precipitation temperatures, especially notable between pressures of 5 to 15 MPa.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!