AI Article Synopsis

  • Skeletal muscle injury triggers a local inflammation and a systemic immunosuppression, which affects immune responses far from the injury site.
  • In a study using a mouse model, researchers explored the role of dendritic cells (DCs) that appear in injured muscle and their ability to uptake antigens and activate T cells.
  • The results demonstrated that the presence of these DCs, especially with microbial stimuli, enhances T cell responses and suggests that they play a crucial role in initiating protective immune responses during muscle regeneration.

Article Abstract

Skeletal muscle injury causes a local sterile inflammatory response. In parallel, a state of immunosuppression develops distal to the site of tissue damage. Granulocytes and monocytes that are rapidly recruited to the site of injury contribute to tissue regeneration. In this study we used a mouse model of traumatic skeletal muscle injury to investigate the previously unknown role of dendritic cells (DCs) that accumulate in injured tissue. We injected the model antigen ovalbumin (OVA) into the skeletal muscle of injured or sham-treated mice to address the ability of these DCs in antigen uptake, migration, and specific T cell activation in the draining popliteal lymph node (pLN). Immature DC-like cells appeared in the skeletal muscle by 4 days after injury and subsequently acquired a mature phenotype, as indicated by increased expression of the costimulatory molecules CD40 and CD86. After the injection of OVA into the muscle, OVA-loaded DCs migrated into the pLN. The migration of DC-like cells from the injured muscle was enhanced in the presence of the microbial stimulus lipopolysaccharide at the site of antigen uptake and triggered an increased OVA-specific T helper cell type 1 (Th1) response in the pLN. Naïve OVA-loaded DCs were superior in Th1-like priming in the pLN when adoptively transferred into the skeletal muscle of injured mice, a finding indicating the relevance of the microenvironment in the regenerating skeletal muscle for increased Th1-like priming. These findings suggest that DC-like cells that accumulate in the regenerating muscle initiate a protective immune response upon microbial challenge and thereby overcome injury-induced immunosuppression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873214PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155870PLOS

Publication Analysis

Top Keywords

skeletal muscle
28
muscle injury
12
dc-like cells
12
muscle
10
cells accumulate
8
accumulate regenerating
8
microbial challenge
8
muscle injured
8
antigen uptake
8
ova-loaded dcs
8

Similar Publications

Protocol for quantifying muscle fiber size, number, and central nucleation of mouse skeletal muscle cross-sections using Myotally software.

STAR Protoc

January 2025

Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA. Electronic address:

Here, we present a protocol for using Myotally, a user-friendly software for fast, automated quantification of muscle fiber size, number, and central nucleation from immunofluorescent stains of mouse skeletal muscle cross-sections. We describe steps for installing the software, preparing compatible images, finding the file path, and selecting key parameters like image quality and size limits. We also detail optional features, such as measuring mean fluorescence.

View Article and Find Full Text PDF

miR-449a/miR-340 reprogram cell identity and metabolism in fusion-negative rhabdomyosarcoma.

Cell Rep

January 2025

Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy. Electronic address:

Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, arises in skeletal muscle and remains in an undifferentiated state due to transcriptional and post-transcriptional regulators. Among its subtypes, fusion-negative RMS (FN-RMS) accounts for the majority of diagnoses in the pediatric population. MicroRNAs (miRNAs) are non-coding RNAs that modulate cell identity via post-transcriptional regulation of messenger RNAs (mRNAs).

View Article and Find Full Text PDF

Objective: This systematic review explores the intricate relationship between body composition, with a specific focus on skeletal muscle mass, and vascular health indices, including measures of arterial stiffness-pulse wave velocity (PWV) and cardio-ankle vascular index (CAVI)-as well as arterial structure, specifically carotid artery intima-media thickness (cIMT).

Methods: An extensive literature search, encompassing PubMed, Scopus, EMBASE, Web of Science, and Google Scholar, was conducted until January 2024. Inclusion criteria involved original observational studies, with cross-sectional or longitudinal designs, reporting body composition parameters and vascular health measures.

View Article and Find Full Text PDF

Objectives: To study the correlation between sarcopenia and hypertrophy of the future liver remnant(FLR) in patients undergoing portal vein embolization(PVE) before liver resection, and to assess the outcomes after resection.

Methods: This retrospective study examined patients underwent PVE from May 2012 to May 2023. Demographic, clinical and laboratory features were documented and total liver volumes(TLV) and FLR volumes were measured before and 2-4 weeks after PVE.

View Article and Find Full Text PDF

Sarcopenic obesity (SO) is a body composition phenotype derived from the simultaneous presence in the same individual of an increase in fat mass and a decrease in skeletal muscle mass and/or function. Several protocols for the diagnosis of SO have been proposed in the last two decades making prevalence and disease risk estimates of SO heterogeneous and challenging to interpret. Dementia is a complex neurological disorder that significantly impacts patients, carers and healthcare systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!