Multiple in vitro tests are widely applied to assess the anticancer activity of new compounds, including their combinations and interactions with other drugs. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay is one of the most commonly used assays to assess the efficacy and interactions of anticancer agents. However, it can be significantly influenced by compounds that modify cell metabolism and reaction conditions. Therefore, several assays are sometimes used to screen for potential anticancer drugs. However, the majority of drug interactions are evaluated only with this single method. The aim of our studies was to verify whether the choice of an assay has an impact on determining the type of interaction and to identify the source of discrepancies. We compared the accuracy of MTT and CVS (crystal violet staining) assays in the interaction of two compounds characterized by similar anticancer activity: isothiocyanates (ITCs) and Selol. Confocal microscopy studies were carried out to assess the influence of these compounds on the reactive oxygen species (ROS) level, mitochondrial membrane potential, dead-to-live cell ratio and MTT-tetrazolium salt reduction rate. The MTT assay was less reliable than CVS. The MTT test of Selol and 2-oxoheptyl ITC, which affected the ROS level and MTT reduction rate, gave false negative (2-oxoheptyl ITC) or false positive (Selol) results. As a consequence, the MTT assay identified an antagonistic interaction between Selol and ITC, while the metabolism-independent CVS test identified an additive or synergistic interaction. In this paper, we show for the first time that the test assay may change the interpretation of the compound interaction. Therefore, the test method should be chosen with caution, considering the mechanism of action of the compound.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873276 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155772 | PLOS |
Ann Agric Environ Med
March 2023
Medical University, Lublin, Poland.
Introduction: Ionizing radiation is one of the most widely used therapeutic methods in the treatment of prostate cancer, but the problem is developing radioresistance of the tumour. There is evidence that metabolic reprogramming in cancer is one of the major contributors to radioresistance and mitochondria play a crucial role in this process.
Objective: The aim of the study was to assess the influence of oxidative phosphorylation uncoupling to radiosensitivity of prostate cancer cells differing in metabolic phenotype.
To evaluate the clinical impact of molecular tumor profiling (MTP) with targeted sequencing panel tests, pediatric patients with extracranial solid tumors were enrolled in a prospective observational cohort study at 12 institutions. In the 345-patient analytical population, median age at diagnosis was 12 years (range 0-27.5); 298 patients (86%) had 1 or more alterations with potential for impact on care.
View Article and Find Full Text PDFToxicon
October 2020
Biotechnology Research Center, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, Iran. Electronic address:
Lasers Med Sci
April 2021
Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, São Paulo, SP, Brazil.
Oral squamous cell carcinoma (OSCC) is the most common head and neck malignancy; it has been shown that cancer stem cells (CSC) are present in OSCC and associated with tumor growth, invasion, metastasis, and therapeutic resistance. Photobiomodulation (PBM) is an alternative tool for oncologic treatment adverse effects such as oral mucositis (OM); however, controversy exists regarding the undesirable effects of PBM on tumor or CSC. This study aimed to evaluate in vitro, the effects of PBM, with the same dosimetric parameters as those used in the clinic for OM prevention and treatment, on OSCC cellular viability, as well as PBM's effect on CSC properties and its phenotype.
View Article and Find Full Text PDFToxins (Basel)
April 2020
Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins-UMR 241-EIO, 98713 Papeete-Tahiti, French Polynesia.
The neuroblastoma cell-based assay (CBA-N2a) is widely used for the detection of marine biotoxins in seafood products, yet a consensus protocol is still lacking. In this study, six key parameters of CBA-N2a were revisited: cell seeding densities, cell layer viability after 26 h growth, MTT incubation time, Ouabain and Veratridine treatment and solvent and matrix effects. A step-by-step protocol was defined identifying five viability controls for the validation of CBA-N2a results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!