AI Article Synopsis

  • Researchers are working on finding antiviral drugs specifically for human adenovirus (HAdV) to treat infections in immunocompromised patients.
  • A library of small molecules was created, leading to the identification of six phenylpiperazine derivatives that effectively inhibited HAdV and human cytomegalovirus (HCMV) without causing significant harm to cells.
  • These compounds interfere with the viruses at various stages of their life cycles, suggesting they could be useful for developing new antiviral treatments for DNA virus infections.

Article Abstract

The search for human adenovirus (HAdV)-specific antiviral drugs for the treatment of HAdV infections in immunocompromised patients continues to be a challenging goal for medicinal chemistry. Here, we report the synthesis, biological evaluation, and structure-activity relationships of a small molecules library. We have identified six phenylpiperazine derivatives that significantly inhibited HAdV infection. These six compounds showed the capacity to block HAdV and, in addition, human cytomegalovirus (HCMV) replications at low micromolar concentration, with little or no cytotoxicity. On the basis of our biological studies, these molecules block HAdV and HCMV infections in different phases of their life cycle, providing potential candidates for the development of a new family of antiviral drugs for the treatment of infections by DNA viruses.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.6b00300DOI Listing

Publication Analysis

Top Keywords

synthesis biological
8
biological evaluation
8
evaluation structure-activity
8
structure-activity relationships
8
antiviral drugs
8
drugs treatment
8
block hadv
8
4-acyl-1-phenylaminocarbonyl-2-phenylpiperazine derivatives
4
derivatives potential
4
potential inhibitors
4

Similar Publications

One of the main difficulties in nanotechnology is the development of an environmentally friendly, successful method of producing nanoparticles from biological sources. Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs), with antibacterial and antioxidant properties, were produced using Adiantum venustum extract as a green technique. Fresh A.

View Article and Find Full Text PDF

HIV OctaScanner: A Machine Learning Approach to Unveil Proteolytic Cleavage Dynamics in HIV-1 Protease Substrates.

J Chem Inf Model

January 2025

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China.

The rise of resistance to antiretroviral drugs due to mutations in human immunodeficiency virus-1 (HIV-1) protease is a major obstacle to effective treatment. These mutations alter the drug-binding pocket of the protease and reduce the drug efficacy by disrupting interactions with inhibitors. Traditional methods, such as biochemical assays and structural biology, are crucial for studying enzyme function but are time-consuming and labor-intensive.

View Article and Find Full Text PDF

Validation of a Coarse-Grained Martini 3 Model for Molecular Oxygen.

J Chem Theory Comput

January 2025

IBiTech - BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance 98, 9000 Gent, Belgium.

Molecular oxygen (O) is essential for life, and continuous effort has been made to understand its pathways in cellular respiration with all-atom (AA) molecular dynamics (MD) simulations of, e.g., membrane permeation or binding to proteins.

View Article and Find Full Text PDF

The plant Polygonum capitatum (P. capitatum) contains a variety of flavonoids that are distributed differently among different parts. Nevertheless, differentially expressed genes (DEGs) associated with this heterogeneous distribution have not been identified.

View Article and Find Full Text PDF

A green methodology for the synthesis of carbon quantum dots (CQDs) from coffee husk without the use of any toxic solvents is proposed in this work. Sonochemical exfoliation of biochar, obtained from the thermal carbonization of coffee husk (from a certified coffee seeds) at low temperature in an air-restricted atmosphere, is described as an alternative procedure for the sustainable production of CQDs. The synthesized CQDs exhibited blue fluorescence with a strong maximum emission band at 410 nm when excited at a maximum absorption wavelength of 330 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!