Inhibition of TNF-α-mediated NF-κB Activation by Ginsenoside Rg1 Contributes the Attenuation of Cardiac Hypertrophy Induced by Abdominal Aorta Coarctation.

J Cardiovasc Pharmacol

*Pharmacology Department, Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical University, Jinzhou, China; †Obstetrics and Gynecology Department, Central Hospital of Yingkou Development Area, Yingkou, China; and ‡Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China.

Published: October 2016

Ginsenoside Rg1 (Rg1), a protopanaxadiol saponin extracted from Chinese medicine Panax ginseng C.A. Meyer, has been demonstrated to inhibit the cardiac hypertrophy. However, the molecular mechanisms underlying the inhibition remain poorly understood. Activation of nuclear factor-kappa B (NF-κB) mediated by tumor necrosis factor α (TNF-α) gets involved in the cardiac hypertrophy. This study is designed to investigate the effects and the potential mechanism of Rg1 on the abdominal aorta coarctation (AAC)-induced cardiac hypertrophy with focus on TNF-α/NF-κB signaling pathway. The results showed that oral administration of Rg1 dose-dependently improved the pathological changes, decreased the ratios of left ventricular weight/body weight (LVW/BW) and heart weight/BW (HW/BW), corrected the dysfunction of the cardiac hemodynamics by decreasing the left ventricular systolic pressure and left ventricular end-diastolic pressure and increasing the maximal rate of left ventricular systolic and diastolic pressure (±dp/dtmax) compared with the AAC alone. Rg1 also downregulated the atrial natriuretic peptide mRNA expression and decreased the mRNA and protein expression of TNF-α in the heart tissue of rats compared with the AAC alone. In addition, Rg1 and BAY, the specific inhibitor of NF-κB, decreased the protein content and downregulated the mRNA expression of atrial natriuretic peptide in neonatal rat ventricular myocytes treated with TNF-α. Furthermore, Rg1 increased the protein expression of p65, the subunit of NF-κB, in cytoplasm and decreased the expression p65 in nucleus of the heart tissue of rats undergoing the AAC and of neonatal rat ventricular myocytes treated with TNF-α. The results suggested that Rg1 attenuates the AAC-induced cardiac hypertrophy through inhibition of TNF-α/NF-κB signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1097/FJC.0000000000000410DOI Listing

Publication Analysis

Top Keywords

cardiac hypertrophy
20
left ventricular
16
rg1
9
ginsenoside rg1
8
abdominal aorta
8
aorta coarctation
8
aac-induced cardiac
8
tnf-α/nf-κb signaling
8
signaling pathway
8
ventricular systolic
8

Similar Publications

The influence of the mitochondrial control system on ischemic heart disease has become a major focus of current research. Mitophagy, as a very crucial part of the mitochondrial control system, plays a special role in ischemic heart disease, unlike mitochondrial dynamics. The published reviews have not explored in detail the unique function of mitophagy in ischemic heart disease, therefore, the aim of this paper is to summarize how mitophagy regulates the progression of ischemic heart disease.

View Article and Find Full Text PDF

Echocardiography-guided percutaneous intramyocardial septal radiofrequency ablation procedure for the treatment of Fabry disease: a case report.

Eur Heart J Case Rep

January 2025

Xijing Hypertrophic Cardiomyopathy Center, Department of Ultrasound, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China.

Background: This is a case report of a patient with Fabry disease (FD). We successfully treated a patient with ventricular septal hypertrophy and left ventricular outflow tract (LVOT) obstruction caused by FD. We report our exclusive new surgery for patients with LVOT obstruction, percutaneous intramyocardial septal radiofrequency ablation (PIMSRA) procedure™ (percutaneous intramyocardial septal radiofrequency ablation).

View Article and Find Full Text PDF

VPO1 Promotes Programmed Necrosis of Cardiomyocytes in Rats with Chronic Heart Failure by Upregulating CYLD.

Front Biosci (Landmark Ed)

December 2024

Department of Cardiovascular Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, 410008 Changsha, Hunan, China.

Background: Chronic heart failure (CHF) is a serious cardiovascular condition. Vascular peroxidase 1 (VPO1) is associated with various cardiovascular diseases, yet its role in CHF remains unclear. This research aims to explore the involvement of VPO1 in CHF.

View Article and Find Full Text PDF

KLF2-dependent transcriptional regulation safeguards the heart against pathological hypertrophy.

J Mol Cell Cardiol

December 2024

Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Application of Pluripotent Stem Cells in Heart Regeneration, Chinese Academy of Medical Sciences, Beijing 100037, China. Electronic address:

Background: Our previous single-cell RNA sequencing study in the adult human heart revealed that cardiomyocytes from both the atrium and ventricle display high activities of Krüppel-like factor 2 (KLF2) regulons. However, the role of the transcription factor KLF2 in cardiomyocyte biology remains largely unexplored.

Methods And Results: We employed transverse aortic constriction surgery in male C57BL/6 J mice to develop an in vivo model of cardiac hypertrophy, and generated different in vitro cardiac hypertrophy models in neonatal rat ventricular myocytes and human embryonic stem cell-derived cardiomyocytes.

View Article and Find Full Text PDF

Background: Microcardia and cardiomegaly are good diagnostic and prognostic tools for several diseases. This study investigated the distribution of microcardia and cardiomegaly among students of the University of Health and Allied Sciences (UHAS) in Ghana to determine the prevalence of microcardia and cardiomegaly across gender, and to evaluate the correlation between the presence of these heart conditions and age.

Methods: This retrospective study involved a review of 4519 postero-anterior (PA) chest X-rays (CXRs) between 2020 and 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!