Tandem Bond-Forming Reactions of 1-Alkynyl Ethers.

Acc Chem Res

Department of Chemistry and Biochemistry, California State University, Northridge , 18111 Nordhoff Street, Northridge, California 91330, United States.

Published: June 2016

Electron-rich alkynes, such as ynamines, ynamides, and ynol ethers, are functional groups that possess significant potential in organic chemistry for the formation of carbon-carbon bonds. While the synthetic utility of ynamides has recently been expanded considerably, 1-alkynyl ethers, which possess many of the reactivity features of ynamides, have traditionally been far less investigated because of concerns about their stability. Like ynamides, ynol ethers are relatively unhindered to approach by functional groups present in the same or different molecules because of their linear geometry, and they can potentially form up to four new bonds in a single transformation. Ynol ethers also possess unique reactivity features that make them complementary to ynamides. Research over the past decade has shown that ynol ethers formed in situ from stable precursors engage in a variety of useful carbon-carbon bond-forming processes. Upon formation at -78 °C, allyl alkynyl ethers undergo a rapid [3,3]-sigmatropic rearrangement to form allyl ketene intermediates, which may be trapped with alcohol or amine nucleophiles to form γ,δ-unsaturated carboxylic acid derivatives. The process is stereospecific, takes place in minutes at cryogenic temperatures, and affords products containing (quaternary) stereogenic carbon atoms. Trapping of the intermediate allyl ketene with carbonyl compounds, epoxides, or oxetanes instead leads to complex α-functionalized β-, γ-, or δ-lactones, respectively. [3,3]-Sigmatropic rearrangement of benzyl alkynyl ethers also takes place at temperatures ranging from -78 to 60 °C to afford substituted 2-indanones via intramolecular carbocyclization of the ketene intermediate. tert-Butyl alkynyl ethers containing pendant di- and trisubstituted alkenes and enol ethers are stable to chromatographic isolation and undergo a retro-ene/[2 + 2] cycloaddition reaction upon mild thermolysis (90 °C) to afford cis-fused cyclobutanones and donor-acceptor cyclobutanones in good to excellent yields and diastereoselectivities. This process, which takes place under neutral conditions and proceeds through an aldoketene intermediate, obviates the need to employ moisture-sensitive and/or unstable acid chlorides under basic conditions for intramolecular [2 + 2] cycloaddition reactions. Furthermore, Lewis acid-catalyzed intramolecular condensations of both ethyl and tert-butyl ynol ethers with tethered acetals efficiently provide protected five-, six-, and seven-membered cyclic Baylis-Hilman adducts. Metalated ethoxyacetylene can also participate in multiple bond-forming reactions that avoid isolation of the alkynyl ether intermediate. Lewis acid-promoted tandem additions employing epoxides/oxetanes and carbonyl compounds give rise to (Z)-α-alkylidene and α-benzylidene lactones stereoselectively in high overall yields. Three new carbon-carbon bonds and a ring are formed in this atom-economical single-flask transformation, resulting in a significant increase in molecular complexity. This Account provides a detailed overview of these useful transformations with the intention of stimulating further interest in and research on ynol ethers and their application in organic synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.6b00107DOI Listing

Publication Analysis

Top Keywords

ynol ethers
24
ethers
12
alkynyl ethers
12
takes place
12
bond-forming reactions
8
1-alkynyl ethers
8
ynamides ynol
8
functional groups
8
carbon-carbon bonds
8
ethers possess
8

Similar Publications

Phototriggered Generation of Ynol Ethers and Their Rearrangement to Ketenes.

J Org Chem

August 2024

Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.

This study developed reactions for the phototriggered generation of reactive ynol ethers using alkoxycyclopropenones. The resulting ynol ethers underwent rearrangement to ketenes, which subsequently participated in cycloaddition with alkynes and the acylation of amines. The alkoxy groups in the ynol ethers significantly influenced on the reactivity toward their rearrangement to ketenes.

View Article and Find Full Text PDF

Enol esters and conjugated enynes are valuable structural motifs for synthetic chemistry and material sciences. Herein, the synthesis of tetra-substituted enol ester 2-iodobenzoate derivatives was achieved in good yields at room temperature through a gold-catalyzed acyloxyalkynylation of sensitive ynol ethers with ethynylbenziodoxolones (EBXs), the latter acting as bifunctional reactants. The conversion is highly regioselective with a broad substrate scope.

View Article and Find Full Text PDF

Alkyne carbopalladation reactions can rapidly generate multiple new C-C bonds; however, regioselectivity is challenging for intermolecular variants. Using ynol ethers, we observe complete regiocontrol of migratory insertion followed by a second migratory insertion with a pendant alkene to turn-over the catalytic cycle. The resulting products are oligosubstituted 1-indenol ethers with defined stereochemistry based on the initial alkene geometry.

View Article and Find Full Text PDF

A new class of push-pull-activated alkynes featuring di- and trifluorinated ynol ethers was synthesized. The difluorinated ynol ether exhibited an optimal balance of stability and reactivity, displaying a substantially improved half-life in the presence of aqueous thiols over the previously reported 1-haloalkyne analogs while reacting just as fast in the hydroamination reaction with ,-diethylhydroxylamine. The trifluorinated ynol ether reacted significantly faster, exhibiting a second order rate constant of 0.

View Article and Find Full Text PDF

A broad scope synthesis of cyclobutanones by gold(I)-catalyzed [2 + 2] cycloaddition of ynol ethers with alkenes has been developed. We also found that internal aryl ynol ethers can undergo (4 + 2) cycloaddition reaction with alkenes leading to the corresponding chromanes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!