Unlabelled: Measles is a highly contagious, acute viral illness. Immune cells within the airways are likely first targets of infection, and these cells traffic measles virus (MeV) to lymph nodes for amplification and subsequent systemic dissemination. Infected immune cells are thought to return MeV to the airways; however, the mechanisms responsible for virus transfer to pulmonary epithelial cells are poorly understood. To investigate this process, we collected blood from human donors and generated primary myeloid cells, specifically, monocyte-derived macrophages (MDMs) and dendritic cells (DCs). MDMs and DCs were infected with MeV and then applied to primary cultures of well-differentiated airway epithelial cells from human donors (HAE). Consistent with previous results obtained with free virus, infected MDMs or DCs were incapable of transferring MeV to HAE when applied to the apical surface. Likewise, infected MDMs or DCs applied to the basolateral surface of HAE grown on small-pore (0.4-μm) support membranes did not transfer virus. In contrast, infected MDMs and DCs applied to the basolateral surface of HAE grown on large-pore (3.0-μm) membranes successfully transferred MeV. Confocal microscopy demonstrated that MDMs and DCs are capable of penetrating large-pore membranes but not small-pore membranes. Further, by using a nectin-4 blocking antibody or recombinant MeV unable to enter cells through nectin-4, we demonstrated formally that transfer from immune cells to HAE occurs in a nectin-4-dependent manner. Thus, both infected MDMs and DCs rely on cell-to-cell contacts and nectin-4 to efficiently deliver MeV to the basolateral surface of HAE.
Importance: Measles virus spreads rapidly and efficiently in human airway epithelial cells. This rapid spread is based on cell-to-cell contact rather than on particle release and reentry. Here we posit that MeV transfer from infected immune cells to epithelial cells also occurs by cell-to-cell contact rather than through cell-free particles. In addition, we sought to determine which immune cells transfer MeV infectivity to the human airway epithelium. Our studies are based on two types of human primary cells: (i) myeloid cells generated from donated blood and (ii) well-differentiated airway epithelial cells derived from donor lungs. We show that different types of myeloid cells, i.e., monocyte-derived macrophages and dendritic cells, transfer infection to airway epithelial cells. Furthermore, cell-to-cell contact is an important component of successful MeV transfer. Our studies elucidate a mechanism by which the most contagious human respiratory virus is delivered to the airway epithelium.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4944272 | PMC |
http://dx.doi.org/10.1128/JVI.00266-16 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China.
Purpose: To investigate the therapeutic efficacy of BEZ235, a dual PI3K/mTOR inhibitor, in suppressing pathological neovascularization in an oxygen-induced retinopathy (OIR) mouse model and explore the role of cyclin D1 in endothelial cell cycle regulation.
Methods: Single-cell RNA sequencing was performed to analyze gene expression and cell-cycle alterations in retinal endothelial cells under normoxic and OIR conditions. The effects of BEZ235 on human umbilical vein endothelial cells (HUVECs) and human retinal microvascular endothelial cells (HRMECs) were evaluated by assessing cell viability, cell-cycle progression, proliferation, migration, and tube formation.
Cell Mol Life Sci
January 2025
Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic condition encompassing metabolic dysfunction-associated steatotic liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), which can progress to fibrosis, cirrhosis, or hepatocellular carcinoma (HCC). The heterogeneous and complex nature of MASLD complicates optimal drug development. Ebastine, an antihistamine, exhibits antitumor activity in various types of cancer.
View Article and Find Full Text PDFJ Exp Med
April 2025
Key Laboratory of Multi-Cell System, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
Hepatic fibroblasts comprise groups of stromal cells in the liver that are phenotypically distinct from hepatic stellate cells. However, their physiology is poorly understood. By single-cell RNA sequencing, we identified Cd34 and Dpt as hepatic fibroblast-specific genes.
View Article and Find Full Text PDFClin Exp Dent Res
February 2025
School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran.
Background And Objective: Tongue squamous cell carcinoma (TSCC) is the most prevalent oral cancer. Despite considerable advancements in treatment, the 5-year survival rate remains relatively unchanged. Langerhans cells (LCs) play an important role in antitumor immunity.
View Article and Find Full Text PDFMol Oncol
January 2025
Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, Norway.
The presence of cancer stem cells is linked to aggressive disease and higher risk of recurrence, and multiple markers have been proposed to detect cancer stem cells. However, a detailed evaluation of the expression patterns and the prognostic value of markers relevant for endometrial cancer is lacking. As organoid models are suggested to be enriched in cancer stem cells, such models may prove valuable to define tissue-specific cancer stem cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!