Electro-mechanical sensing in freestanding monolayered gold nanoparticle membranes.

Nanoscale

Université de Toulouse, LPCNO, INSA-CNRS-UPS, 135 avenue de Rangueil, Toulouse 31077, France.

Published: June 2016

The electro-mechanical sensing properties of freestanding monolayered membranes of dodecanethiol coated 7 nm gold nanoparticles (NPs) are investigated using AFM force spectroscopy and conductive AFM simultaneously. The electrical resistance of the NP membranes increases sensitively with the point-load force applied in the center of the membranes using an AFM tip. Numerical simulations of electronic conduction in a hexagonally close-packed two-dimensional (2D) array of NPs under point load-deformation are carried out on the basis of electronic transport measurements at low temperatures and strain modeling of the NP membranes by finite element analysis. These simulations, supporting AFM-based electro-mechanical measurements, attribute the high strain sensitivity of the monolayered NP membranes to the exponential dependence of the tunnel electron transport in 2D NP arrays on the strain-induced length variation of the interparticle junctions. This work thus evidences a new class of highly sensitive nano-electro-mechanical systems based on freestanding monolayered gold NP membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6nr02004fDOI Listing

Publication Analysis

Top Keywords

freestanding monolayered
12
electro-mechanical sensing
8
monolayered gold
8
monolayered membranes
8
membranes
7
sensing freestanding
4
monolayered
4
gold nanoparticle
4
nanoparticle membranes
4
membranes electro-mechanical
4

Similar Publications

Incipient ferroelectricity bridges traditional dielectrics and true ferroelectrics, enabling advanced electronic and memory devices. Firstly, we report incipient ferroelectricity in freestanding SrTiO nanomembranes integrated with monolayer MoS to create multifunctional devices, demonstrating stable ferroelectric order at low temperatures for cryogenic memory devices. Our observation includes ultra-fast polarization switching (~10 ns), low switching voltage (<6 V), over 10 years of nonvolatile retention, 100,000 endurance cycles, and 32 conductance states (5-bit memory) in SrTiO-gated MoS transistors at 15 K and up to 100 K.

View Article and Find Full Text PDF

Due to their outstanding electrical and thermal properties, graphene and related materials have been proposed as ideal candidates for the development of lightweight systems for thermoelectric applications. Recently, the nanolaminate architecture that entails alternation of continuous graphene monolayers and ultrathin polymer films has been proposed as an efficient route for the development of composites with impressive physicochemical properties. In this work, we present a novel layer-by-layer approach for the fabrication of highly ordered, flexible, heat-resistant, and electrically conductive freestanding graphene/polymer nanolaminates through alternating Marangoni-driven self-assembly of reduced graphene oxide (rGO) and poly(ether imide) (PEI) films.

View Article and Find Full Text PDF

The adsorption of (X = Ni, Pd, and Pt) nanoclusters is simulated by using first-principles methods on MgO(100) and on a MgO monolayer supported on Ag(100), considering the presence of interfacial oxygen. On both the free-standing MgO surface and MgO/Ag, all clusters exhibit robust adhesion and negative charge transfer. molecular dynamics calculations at 200 K demonstrate the stability of the nanoparticles on the MgO/Ag support.

View Article and Find Full Text PDF

We have investigated the Raman spectrum and excitonic effects of the novel 2D TaNiTe structure. The monolayer is an indirect band gap semiconductor with an electronic band gap value of 0.09 and 0.

View Article and Find Full Text PDF

The synthesis of large, freestanding, single-atom-thick two-dimensional (2D) metallic materials remains challenging due to the isotropic nature of metallic bonding. Here, we present a bottom-up approach for fabricating macroscopically large, nearly freestanding 2D gold (Au) monolayers, consisting of nanostructured patches. By forming Au monolayers on an Ir(111) substrate and embedding boron (B) atoms at the Au/Ir interface, we achieve suspended monoatomic Au sheets with hexagonal structures and triangular nanoscale patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!