Application to Photocatalytic H2 Production of a Whole-Cell Reaction by Recombinant Escherichia coli Cells Expressing [FeFe]-Hydrogenase and Maturases Genes.

Angew Chem Int Ed Engl

International Institute for Carbon-Neutral Energy Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.

Published: July 2016

A photocatalytic H2 production system using an inorganic-bio hybrid photocatalyst could contribute to the efficient utilization of solar energy, but would require the development of a new approach for preparing a H2 -forming biocatalyst. In the present study, we constructed a recombinant strain of Escherichia coli expressing the genes encoding the [FeFe]-hydrogenase and relevant maturases from Clostridium acetobutylicum NBRC 13948 for use as a biocatalyst. We investigated the direct application of a whole-cell of the recombinant E. coli. The combination of TiO2 , methylviologen, and the recombinant E. coli formed H2 under light irradiation, demonstrating that whole cells of the recombinant E. coli could be employed for photocatalytic H2 production without any time-consuming and costly manipulations (for example, enzyme purification). This is the first report of the direct application of a whole-cell reaction of recombinant E. coli to photocatalytic H2 production.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201600177DOI Listing

Publication Analysis

Top Keywords

photocatalytic production
16
recombinant e coli
16
whole-cell reaction
8
reaction recombinant
8
direct application
8
application whole-cell
8
recombinant
6
application photocatalytic
4
production
4
production whole-cell
4

Similar Publications

This study uses the Quantum ESPRESSO code to introduce Hubbard correction (U) to the density functional theory (DFT) in order to examine the effects of non-metals (C, F, N, and S) doping on the structural, electronic, and optical characteristics of rutile TiO. Rutile TiO is a substance that shows promise for use in renewable energy production, including fuels and solar energy, as well as environmental cleanup. Its wide bandgap, however, restricts their uses to areas with UV light.

View Article and Find Full Text PDF

Photocatalytic reduction of nitrate to N holds great significance for environmental governance. However, the selectivity of nitrate reduction to N is influenced by sacrificial agents and the kinds of cocatalysts (such as Pt and Ag). The presence of unconsumed sacrificial agents can aggravate environmental pollution, while noble metal-based cocatalysts increase application costs.

View Article and Find Full Text PDF

The prominence of binuclear catalysts underlines the need for the design and development of diverse bifunctional ligand frameworks that exhibit tunable electronic and structural properties. Such strategies enable metal-metal and ligand-metal cooperation towards catalytic applications, improve catalytic activity, and are essential for advancing multi-electron transfers for catalytic application. Hereby, we present the synthesis, crystal structure, and photocatalytic properties of a binuclear Ni(II) complex, [Ni2(1,10-phenanthroline)2(2-sulfidophenolate)2] (1), which crystallizes in the centrosymmetric triclinic system (P-1) showing extensive intra- and inter- non-coordinated interactions.

View Article and Find Full Text PDF

A review of electrospun metal oxide semiconductor-based photocatalysts.

iScience

January 2025

Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China.

In recent years, photocatalytic materials with a nanofiber-like morphology have garnered a surge of academic attention due to their distinctive properties, including an expansive specific surface area, a considerable high aspect ratio, a pronounced resistance to agglomeration, superior electron survivability, and robust surface activity. Consequently, the synthesis of photocatalytic nanofiber materials through various methodologies has drawn considerable attention. The electrospinning technique has been established as a prevalent method for fabricating nanofiber-structured materials, owing to its advantageous properties, including the ability for mass production and the assurance of high continuity.

View Article and Find Full Text PDF

Water contamination is a result of the excessive use of antibiotics nowadays. Owing to this environmental toxicity, photocatalytic degradation is the primary approach to non-biological degradation for their removal. In this context, zerovalent Bi-doped g-CN/BiMoO [g-CN/Bi@BiMoO] ternary nanocomposite was prepared using the wet impregnation method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!