Functional Selectivity of CB2 Cannabinoid Receptor Ligands at a Canonical and Noncanonical Pathway.

J Pharmacol Exp Ther

The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana

Published: August 2016

AI Article Synopsis

  • The CB2 cannabinoid receptor is a promising but underutilized target for therapy, with ligands showing varied structural classes and functional selectivity.
  • In screening tests, the nonclassic cannabinoid CP55940 emerged as the most effective agonist for both inhibition of adenylyl cyclase and arrestin recruitment pathways, while classic cannabinoids showed limited effectiveness.
  • Most classic cannabinoid ligands did not recruit arrestin effectively, indicating a preference for G-protein signaling, while aminoalkylindoles demonstrated moderate efficacy as agonists in the studies.

Article Abstract

The CB2 cannabinoid receptor (CB2) remains a tantalizing, but unrealized therapeutic target. CB2 receptor ligands belong to varied structural classes and display extreme functional selectivity. Here, we have screened diverse CB2 receptor ligands at canonical (inhibition of adenylyl cyclase) and noncanonical (arrestin recruitment) pathways. The nonclassic cannabinoid (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP55940) was the most potent agonist for both pathways, while the classic cannabinoid ligand (6aR,10aR)-3-(1,1-Dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran JWH133) was the most efficacious agonist among all the ligands profiled in cyclase assays. In the cyclase assay, other classic cannabinoids showed little [(-)-trans-Δ(9)-tetrahydrocannabinol and (-)-(6aR,7,10,10aR)-tetrahydro-6,6,9-trimethyl-3-(1-methyl-1-phenylethyl)-6H-dibenzo[b,d]pyran-1-ol] (KM233) to no efficacy [(6aR,10aR)-1-methoxy-6,6,9-trimethyl-3-(2-methyloctan-2-yl)-6a,7,10,10a-tetrahydrobenzo[c]chromene(L759633) and (6aR,10aR)-3-(1,1-dimethylheptyl)-6a,7,8,9,10,10a-hexahydro-1-methoxy-6,6-dimethyl-9-methylene-6H-dibenzo[b,d]pyran]L759656. Most aminoalkylindoles, including [(3R)-​2,​3-​dihydro-​5-​methyl-​3-​(4-​morpholinylmethyl)pyrrolo[1,​2,​3-​de]-​1,​4-​benzoxazin-​6-​yl]-​1-​naphthalenyl-​methanone,​ monomethanesulfonate (WIN55212-2), were moderate efficacy agonists. The cannabilactone 3-(1,1-dimethyl-heptyl)-1-hydroxy-9-methoxy-benzo(c)chromen-6-one (AM1710) was equiefficacious to CP55940 to inhibit adenylyl cyclase, albeit with lower potency. In the arrestin recruitment assays, all classic cannabinoid ligands failed to recruit arrestins, indicating a bias toward G-protein coupling for this class of compound. All aminoalkylindoles tested, except for WIN55212-2 and (1-​pentyl-​1H-​indol-​3-​yl)(2,​2,​3,​3-​tetramethylcyclopropyl)-​methanone (UR144), failed to recruit arrestin. WIN55212-2 was a low efficacy agonist for arrestin recruitment, while UR144 was arrestin biased with no significant inhibition of cyclase. Endocannabinoids were G-protein biased with no arrestin recruitment. The diarylpyrazole antagonist 5-​(4-​chloro-​3-​methylphenyl)-​1-​[(4-​methylphenyl)methyl]-​N-​[(1S,​2S,​4R)-​1,​3,​3-​trimethylbicyclo[2.2.1]hept-​2-​yl]-​1H-​pyrazole-​3-​carboxamide (SR144258) was an inverse agonist in cyclase and arrestin recruitment assays while the aminoalkylindole 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone (AM630) and carboxamide N-(1,3-benzodioxol-5-ylmethyl)-1,2-dihydro-7-methoxy-2-oxo-8-(pentyloxy)-3-quinolinecarboxamide (JTE907) were inverse agonists in cyclase but low efficacy agonists in arrestin recruitment assays. Thus, CB2 receptor ligands display strong and varied functional selectivity at both pathways. Therefore, extreme care must be exercised when using these compounds to infer the role of CB2 receptors in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4959096PMC
http://dx.doi.org/10.1124/jpet.116.232561DOI Listing

Publication Analysis

Top Keywords

arrestin recruitment
24
receptor ligands
16
functional selectivity
12
cb2 receptor
12
recruitment assays
12
cb2 cannabinoid
8
cannabinoid receptor
8
ligands canonical
8
adenylyl cyclase
8
arrestin
8

Similar Publications

The formyl-peptide receptor 2 (FPR2) is a G-protein-coupled receptor (GPCR) that responds to pathogen-derived peptides and regulates both pro-inflammatory and pro-resolution cellular processes. While ligand selectivity and G-protein-signalling of FPR2 have been well characterized, molecular mechanisms controlling subsequent events such as endocytosis and recycling to the plasma membrane are less understood. Here we show the key role of the GPCR kinase 5 (GRK5) in facilitating FPR2 endocytosis and post-endocytic trafficking.

View Article and Find Full Text PDF

The pharmacological basis for nonpeptide agonism of the GLP-1 receptor by orforglipron.

Sci Transl Med

December 2024

Molecular Pharmacology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indianapolis, IN 46285, USA.

Orally bioavailable, synthetic nonpeptide agonists (NPAs) of the glucagon-like peptide-1 receptor (GLP-1R) may offer an effective, scalable pharmacotherapy to address the metabolic disease epidemic. One of the first molecules in the emerging class of GLP-1R NPAs is orforglipron, which is in clinical development for treating type 2 diabetes and obesity. Here, we characterized the pharmacological properties of orforglipron in comparison with peptide-based GLP-1R agonists and other NPAs.

View Article and Find Full Text PDF

Pharmacodynamics of the orexin type 1 (OX) receptor in colon cancer cell models: A two-sided nature of antagonistic ligands resulting from partial dissociation of Gq.

Br J Pharmacol

December 2024

INSERM UMR1149/Inflammation Research Center (CRI), Team "From Inflammation to Cancer in Digestive diseases (INDiD)", DHU UNITY, Université Paris Cité, Paris, France.

Background And Purpose: Orexins have important biological effects on the central and peripheral nervous systems. Their primary ability is to regulate the sleep-wake cycle. Orexins and their antagonists, via OX receptor have been shown to have proapoptotic and antitumor effects on various digestive cancers cell models.

View Article and Find Full Text PDF

The chemokine CXCL12 and its two cognate receptors - CXCR4 and ACKR3 - are key players in various homeostatic and pathophysiological processes, including embryonic development, autoimmune diseases, tissue repair and cancer. Recent reports identified an interaction of CXCR4 and ACKR3 with receptor activity-modifying proteins (RAMPs), and RAMP3 has been shown to facilitate ACKR3's recycling properties. Yet, the functional effects of RAMPs on the CXCL12 signalling axis remain largely elusive.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how a peptide hormone (PTH) interacts with its receptor (PTHR) and β-arrestin (βarr) to form a ternary complex, which is key for G protein-coupled receptor (GPCR) signaling.
  • - Using fluorescent markers and advanced imaging techniques, the research shows that PTHR moves freely in the cell membrane while unbound PTH has limited mobility, indicating a distinct dynamic behavior.
  • - The formation of the PTH-PTHR-βarr complex happens in three steps: ligand-receptor collisions, βarr recruitment triggered by a specific lipid (PIP), and final assembly within clathrin clusters, highlighting the importance of PIP in GPCR
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!