Unlabelled: Phosphorylation of serine/threonine residues preceding a proline regulates the fate of its targets through postphosphorylation conformational changes catalyzed by the peptidyl-prolyl cis-/trans isomerase Pin1. By flipping the substrate between two different functional conformations, this enzyme exerts a fine-tuning of phosphorylation signals. Pin1 has been detected in dendritic spines and shafts where it regulates protein synthesis required to sustain the late phase of long-term potentiation (LTP). Here, we demonstrate that Pin1 residing in postsynaptic structures can interact with postsynaptic density protein-95 (PSD-95), a key scaffold protein that anchors NMDA receptors (NMDARs) in PSD via GluN2-type receptor subunits. Pin1 recruitment by PSD-95 occurs at specific serine-threonine/proline consensus motifs localized in the linker region connecting PDZ2 to PDZ3 domains. Upon binding, Pin1 triggers structural changes in PSD-95, thus negatively affecting its ability to interact with NMDARs. In electrophysiological experiments, larger NMDA-mediated synaptic currents, evoked in CA1 principal cells by Schaffer collateral stimulation, were detected in hippocampal slices obtained from Pin1(-/-) mice compared with controls. Similar results were obtained in cultured hippocampal cells expressing a PSD-95 mutant unable to undergo prolyl-isomerization, thus indicating that the action of Pin1 on PSD-95 is critical for this effect. In addition, an enhancement in spine density and size was detected in CA1 principal cells of Pin1(-/-) or in Thy-1GFP mice treated with the pharmacological inhibitor of Pin1 catalytic activity PiB.Our data indicate that Pin1 controls synaptic content of NMDARs via PSD-95 prolyl-isomerization and the expression of dendritic spines, both required for LTP maintenance.

Significance Statement: PSD-95, a membrane-associated guanylate kinase, is the major scaffolding protein at excitatory postsynaptic densities and a potent regulator of synaptic strength and plasticity. The activity of PSD-95 is tightly controlled by several post-translational mechanisms including proline-directed phosphorylation. This signaling cascade regulates the fate of its targets through postphosphorylation conformational modifications catalyzed by the peptidyl-prolyl cis-/trans isomerase Pin1. Here, we uncover a new role of Pin1 in glutamatergic signaling. By interacting with PSD-95, Pin1 dampens PSD-95 ability to complex with NMDARs, thus negatively affecting NMDAR signaling and spine morphology. Our findings further emphasize the emerging role of Pin1 as a key modulator of synaptic transmission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601765PMC
http://dx.doi.org/10.1523/JNEUROSCI.3124-15.2016DOI Listing

Publication Analysis

Top Keywords

pin1
13
psd-95
11
synaptic content
8
nmda receptors
8
regulates fate
8
fate targets
8
targets postphosphorylation
8
postphosphorylation conformational
8
catalyzed peptidyl-prolyl
8
peptidyl-prolyl cis-/trans
8

Similar Publications

Prolyl hydroxylase domain 2 (PHD2) is the primary oxygen sensing enzyme involved in hydroxylation of hypoxia-inducible factor (HIF). Under normoxic conditions, PHD2 hydroxylates specific proline residues in HIF-1α and HIF-2α, promoting their ubiquitination and subsequent proteasomal degradation. Although PHD2 activity decreases in hypoxia, notable residual activity persists, but its function in these conditions remains unclear Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) targets proteins with phosphorylated serine/threonine-proline (pSer/Thr-Pro) motifs.

View Article and Find Full Text PDF

NtLPA1 overexpression regulates the growth of tobacco and enhances resistance to blight.

Transgenic Res

January 2025

Shaanxi Tobacco Company Baoji City Company, Baoji, 721000, Shaanxi, China.

The involvement of Loose Plant Architecture 1 (LPA1) in regulating plant growth and leaf angle has been previously demonstrated. However, the fundamental genetic background remains unidentified. To further understand the tissue expression profile of the NtLPA1 gene, an overexpression vector (pBI121-NtLPA1) was developed and employed to modify tobacco using the leaf disc method genetically.

View Article and Find Full Text PDF

USP34 regulates PIN1-cGAS-STING axis-dependent ferroptosis in cervical cancer via SUMOylation.

Int Immunopharmacol

January 2025

Department of Gynecology, Dalian Women and Children's Medical Center (Group), Dalian Medical University, Dalian 116033, Liaoning, China. Electronic address:

Background: Cervical cancer is a prevalent form of cancer in women, and the inhibition of ferroptosis has been shown to promote the progression of cervical cancer tumours. This study aimed to investigate the role of PIN1 in regulating ferroptosis in cervical cancer, focusing on its ability to modulate the cGAS-STING pathway and the potential involvement of USP34 as an upstream regulator of PIN1.

Methods: PIN1-overexpressing and PIN1-knockdown cell lines were constructed.

View Article and Find Full Text PDF

A comprehensive investigation of the impact of cross-linker backbone structure on protein dynamics analysis: A case study with Pin1.

Talanta

December 2024

State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China. Electronic address:

Understanding protein structure is essential for elucidating its function. Cross-linking mass spectrometry (XL-MS) has been widely recognized as a powerful tool for analyzing protein complex structures. However, the effect of cross-linker backbone structure on protein dynamic conformation analysis remains less understood.

View Article and Find Full Text PDF

The protein tyrosine phosphatase Lyp/PTPN22 drives TNFα-induced priming of superoxide anions production by neutrophils and arthritis.

Free Radic Biol Med

December 2024

INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Paris, France. Electronic address:

Neutrophils are essential for host defense against infections, but they also play a key role in acute and chronic inflammation. The protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene encodes the lymphoid-specific tyrosine phosphatase (Lyp) and a genetic single-nucleotide polymorphism of PTPN22 rs2476601 (R620W) has been associated with several human autoimmune diseases, including rheumatoid arthritis (RA). Here, we investigated the role of Lyp in TNFα-induced priming of neutrophil ROS production and in the development of arthritis using new selective Lyp inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!