Transcriptional control of insulin-sensitive glucose carrier Glut4 expression in adipose tissue cells.

Dokl Biochem Biophys

Faculty of Fundamental Medicine, Moscow State University, Lomonosovskii pr. 31, korp. 5, Moscow, 119192, Russia.

Published: March 2016

In search for new targets for obesity treatment, we have studied the effect of several transcription factors on the conversion of murine preadipocytes from the 3T3-L1 cell line into adipocytes. We have found that knockdown of Prep1 gene expression affects adipogenic differentiation and results in significant increase in the insulin-sensitive glucose carrier Glut4 gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1134/S1607672916020186DOI Listing

Publication Analysis

Top Keywords

insulin-sensitive glucose
8
glucose carrier
8
carrier glut4
8
gene expression
8
transcriptional control
4
control insulin-sensitive
4
glut4 expression
4
expression adipose
4
adipose tissue
4
tissue cells
4

Similar Publications

Sexual and Metabolic Differences in Hippocampal Evolution: Alzheimer's Disease Implications.

Life (Basel)

November 2024

Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaen, Las Lagunillas University Campus, 23009 Jaen, Spain.

Sex differences in brain metabolism and their relationship to neurodegenerative diseases like Alzheimer's are an important emerging topic in neuroscience. Intrinsic anatomic and metabolic differences related to male and female physiology have been described, underscoring the importance of considering biological sex in studying brain metabolism and associated pathologies. The hippocampus is a key structure exhibiting sex differences in volume and connectivity.

View Article and Find Full Text PDF

Introduction: Skeletal muscle is the largest insulin-sensitive tissue in the human body, alteration in muscle mass and strength substantially impact glucose metabolism. This systematic review aims to investigate further the relationship between muscle mass and strength towards type 2 diabetes mellitus (T2DM) incidence.

Methods: This systematic review included cohort studies that examinedthe relationship between muscle mass and/or muscle strength on T2DM incidence.

View Article and Find Full Text PDF

The athlete's paradox states that intramyocellular triglyceride accumulation associates with insulin resistance in sedentary but not in endurance-trained humans. Underlying mechanisms and the role of muscle lipid distribution and composition on glucose metabolism remain unclear. We compared highly trained athletes (ATHL) with sedentary normal weight (LEAN) and overweight-to-obese (OVWE) male and female individuals.

View Article and Find Full Text PDF

Spotlight on the Mechanism of Action of Semaglutide.

Curr Issues Mol Biol

December 2024

1st Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece.

Initially intended to control blood glucose levels in patients with type 2 diabetes, semaglutide, a potent glucagon-like peptide 1 analogue, has been established as an effective weight loss treatment by controlling appetite. Integrating the latest clinical trials, semaglutide in patients with or without diabetes presents significant therapeutic efficacy in ameliorating cardiometabolic risk factors and physical functioning, independent of body weight reduction. Semaglutide may modulate adipose tissue browning, which enhances human metabolism and exhibits possible benefits in skeletal muscle degeneration, accelerated by obesity and ageing.

View Article and Find Full Text PDF

Identification of Novel Organo-Se BTSA-Based Derivatives as Potent, Reversible, and Selective PPARγ Covalent Modulators for Antidiabetic Drug Discovery.

J Med Chem

December 2024

Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.

Recent studies have identified selective peroxisome proliferator-activated receptor γ (PPARγ) modulators, which synergistically engage in the inhibition mechanism of PPARγ-Ser273 phosphorylation, as a promising approach for developing safer and more effective antidiabetic drugs. Herein, we present the design, synthesis, and evaluation of a new class of organo-Se compounds, namely, benzothiaselenazole-1-oxides (BTSAs), acting as potent, reversible, and selective PPARγ covalent modulators. Notably, , especially , displayed a high binding affinity and superior antidiabetic effects with diminished side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!