Self-renewal and differentiation of mammalian haematopoietic stem cells (HSCs) are controlled by a specialized microenvironment called 'the niche'. In the bone marrow, HSCs receive signals from both the endosteal and vascular niches. The posterior signalling centre (PSC) of the larval Drosophila haematopoietic organ, the lymph gland, regulates blood cell differentiation under normal conditions and also plays a key role in controlling haematopoiesis under immune challenge. Here we report that the Drosophila vascular system also contributes to the lymph gland homoeostasis. Vascular cells produce Slit that activates Robo receptors in the PSC. Robo activation controls proliferation and clustering of PSC cells by regulating Myc, and small GTPase and DE-cadherin activity, respectively. These findings reveal that signals from the vascular system contribute to regulating the rate of blood cell differentiation via the regulation of PSC morphology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4874035PMC
http://dx.doi.org/10.1038/ncomms11634DOI Listing

Publication Analysis

Top Keywords

drosophila haematopoietic
8
lymph gland
8
blood cell
8
cell differentiation
8
vascular system
8
vascular
5
vascular control
4
control drosophila
4
haematopoietic microenvironment
4
microenvironment slit/robo
4

Similar Publications

Larval hematopoietic organs of multiple species show effector caspase activity and DNA damage response.

MicroPubl Biol

December 2024

Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India.

Macrophages are present in various forms throughout metazoans and play conserved roles in phagocytosis, immunity, and tissue homeostasis. In s larval hematopoietic organ, the lymph gland, transient caspase-mediated activation of caspase-activated DNase triggers the DNA damage response (DDR), which is crucial for macrophage-type cell differentiation. Here, we report that other species having different-sized mature lymph glands show effector caspase activity and DDR similar to those in , indicating that the developmental mechanism regulating phagocytic macrophage differentiation is conserved in different species of .

View Article and Find Full Text PDF

Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established.

View Article and Find Full Text PDF

Turandot (Tot) family proteins, which are induced via the JAK/STAT pathway after infection, also suppress lymph gland tumors in mutant larvae. We investigated the potential role of hemocytes in induction in tumor-bearing mutants via immunostaining and RNAi experiments. Normal hemocytes transplanted into mutant larvae were recruited to the tumor and fat body (FB), suggesting that these cells transmit tumor-related information.

View Article and Find Full Text PDF
Article Synopsis
  • Hematopoiesis, essential for organism health, can be studied using Drosophila (fruit flies) due to similar regulatory processes found in vertebrates, primarily occurring in the larval lymph gland with various specialized zones.
  • The study focuses on the role of Rab1 in maintaining β-integrin trafficking in hemocytes and lymph gland cells, highlighting its importance in cell adhesion and the potential disruption caused by Rab1 dysfunction.
  • Findings reveal that Rab1 impairment results in mislocalized β-integrin, affecting lamellocyte differentiation and overall hematopoietic homeostasis, with evidence showing interactions with the adhesion protein DE-cadherin and the Q-SNARE protein Syntaxin
View Article and Find Full Text PDF

Novel features of Drosophila hematopoiesis uncovered by long-term live imaging.

Dev Biol

January 2025

Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada. Electronic address:

Stem cells are subject to continuous regulation to ensure that the correct balance between stem cell differentiation and self-renewal is maintained. The dynamic and ongoing nature of stem cell regulation, as well as the complex signaling microenvironment in which stem cells are typically found, means that studying them in their endogenous environment in real time has multiple advantages over static fixed-sample approaches. We recently described a method for long-term, ex-vivo, live imaging of the blood progenitors in the Drosophila larval hematopoietic organ, the Lymph Gland (LG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!